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[Rezende et al., 2014; Ranganath et al., 2015; Gregor et al., 2015]



• Deep generative models provide complex representations of data.

• Learning these representations are fundamentally tied to their inference
method from data.

• With variational inference methods, the bottleneck is specifying a rich
family of approximating distributions.

How we can build expressive variational families in a black box framework,
which adapt to the model complexity at hand?



Background

Given:

• Data set x.

• Joint probability model p(x, z), with latent variables z1, . . . , zd .

Goal:

• Compute posterior p(z | x).

Variational inference:

• Posit a family of distributions {q(z;λ) : λ ∈ Λ}.

• Minimize KL(q ‖ p), which is equivalent to maximizing the elbo

L = Eq(z;λ)[log p(x | z)]− KL(q(z;λ)‖p(z)).

• Commonly use a mean-field distribution q(z;λ) =
∏d
i=1 q(zi;λi).



Variational models

Interpret q as a variational model for posterior latent variables z.

Hierarchical variational models: prior q(λ; θ), likelihood
∏
i q(zi | λi).

q(z; θ) =

∫ [∏
i

q(zi | λi)
]
q(λ; θ) dλ

• Hierarchical variational models unify other expressive approximations
(mixture, structured, MCMC, copula,. . . ).

• Their expressiveness is determined by the complexity of the prior q(λ).

[Ranganath et al., 2015]



Prior: Gaussian processes

Consider a data set of m source-target pairs D = {(sn, tn)}mn=1, with sn ∈ Rc
and tn ∈ Rd .

We aim to learn a function f : Rc → Rd over all source-target pairs,

tn = f (sn), p(f ) =
d∏
i=1

GP(fi; 0,K),

where each fi : Rc → R. Given data D, the conditional p(f | D) forms a
distribution over mappings which interpolate between input-output pairs.

(fig. by Ryan Adams)



Variational Gaussian process

D = {(sn, tn)}mn=1 is variational data, comprising input-output pairs.
θ are kernel hyperparameters.

Generative process:

• Draw latent input ξ ∈ Rc: ξ ∼ N (0, I).

• Draw non-linear mapping f : Rc → Rd conditioned on D:
f ∼

∏d
i=1 GP(0,K) | D.

• Draw approximate posterior samples z ∈ supp(p):
z = (z1, . . . , zd) ∼

∏d
i=1 q(z | fi(ξ)).



Variational Gaussian process

The density of the vgp is

qvgp(z; θ,D) =

∫∫ [ d∏
i=1

q(zi | fi(ξ))

][
d∏
i=1

GP(fi; 0,K) | D

]
N (ξ; 0, I) df dξ.

• The vgp forms an ensemble of mean-field distributions—“weights”
(mixing measure) are specified by a Bayesian nonparametric prior.

• The variational data D anchors the random non-linear mappings at
certain input-output pairs.



Variational Gaussian process

Universal Approximation Theorem. For any posterior distribution p(z | x) with a
finite number of latent variables and continuous inverse CDF, there exist a set of
parameters (θ,D) such that

KL(qvgp(z; θ,D) ‖ p(z | x)) = 0.

The vgp’s complexity grows efficiently and towards any distribution, adapting
to the generative model’s complexity at hand.



Black box inference

The elbo is analytically intractable due to the density qvgp(z).

We present a new variational lower bound:

L̃ = Eqvgp [log p(x | z)]

− Eqvgp

[
KL
(
q(z | f (ξ))

∥∥∥p(z))+ KL
(
q(ξ, f )

∥∥∥r(ξ, f | z))],
where r is an auxiliary distribution.

Auto-encoder interpretation. Maximize the expected negative reconstruction
error, regularized by expected divergences. It is a nested vae bound.



Black box inference

L̃(θ, φ) = Eqvgp [log p(x | z)]

− Eqvgp

[
KL
(
q(z | f (ξ))

∥∥∥p(z))+ KL
(
q(ξ, f ; θ)

∥∥∥r(ξ, f | z;φ)
)]

1. Inference networks. Specify inference networks to parameterize both the
variational and auxiliary models:

xn 7→ q(zn | xn;Dn), xn, zn 7→ r(ξn, fn | xn, zn;φn),

where r is specified as a fully factorized Gaussian with φn = (µn, σ
2
n I). This

amortizes the cost of computation by making all parameters global.



Black box inference

L̃(θ, φ) = Eqvgp [log p(x | z)]

− Eqvgp

[
KL
(
q(z | f (ξ))

∥∥∥p(z))+ KL
(
q(ξ, f ; θ)

∥∥∥r(ξ, f | z;φ)
)]

2. Analytic KL terms.

• KL
(
q(z | f (ξ))

∥∥∥p(z)): Standard in vaes—it is analytic for deep
generative models such as the dlgm and draw.

• KL
(
q(ξ, f )

∥∥∥r(ξ, f | z)): Always analytic as we’ve specified both joint
distributions to be Gaussian.



Black box inference

L̃(θ, φ) = Eqvgp [log p(x | z)]

− Eqvgp

[
KL
(
q(z | f (ξ))

∥∥∥p(z))+ KL
(
q(ξ, f ; θ)

∥∥∥r(ξ, f | z;φ)
)]

3. Reparameterization.

• For ξ ∼ N (0, I), apply location-scale transform f(ξ; θ). This implies
f(ξ; θ) = f (ξ) for f ∼

∏d
i=1 GP(0,K) | D.

• Suppose the mean-field is also reparameterizable: let ε ∼ w such that
z(ε; f) ∼ q(z | f (ξ)).



Black box inference

The reparameterized variational lower bound is

L̃(θ, φ) = EN (ξ)

[
Ew(ε)

[
log p(x | z(ε; f))

]]
− EN (ξ)

[
Ew(ε)

[
KL(q(z | f)‖p(z)) + KL(q(ξ, f ; θ)‖r(ξ, f | z(ε; f);φ))

]]
.

Run stochastic optimization:

• Stochastic gradients exhibit low variance due to analytic KL terms and
reparameterization.

• Complexity is linear in the number of latent variables, which is the same
as a mean-field approximation!



Experiments: Binarized MNIST

Model − log p(x) ≤

DLGM + VAE [Burda et al., 2015] 86.76
DLGM + HVI (8 leapfrog steps) [Salimans et al., 2015] 85.51 88.30
DLGM + NF (k = 80) [Rezende + Mohamed, 2015] 85.10
EoNADE-5 2hl (128 orderings) [Raiko et al., 2015] 84.68
DBN 2hl [Murray + Salakhutdinov, 2009] 84.55
DARN 1hl [Gregor et al., 2014] 84.13
Convolutional VAE + HVI [Salimans et al., 2015] 81.94 83.49
DLGM 2hl + IWAE (k = 50) [Burda et al., 2015] 82.90
DRAW [Gregor et al. 2015] 80.97

DLGM 1hl + VGP 83.64
DLGM 2hl + VGP 81.90
DRAW + VGP 80.11

We also find richer latent representations than the VAE or IWAE.



Experiments: Sketch

Model Epochs ≤ − log p(x)

DRAW 100 526.8
200 479.1
300 464.5

DRAW + VGP 100 475.9
200 430.0
300 425.4

Data set of 20,000 human sketches equally distributed over 250 object
categories.

The vgp (top) learns texture and sharpness, able to sketch more complex
shapes than the standard draw (bottom).



Summary

• Introduced the framework of variational models.

• Developed the variational Gaussian process—proven to be a universal
approximator.

• Derived scalable black box inference—three key ingredients with
inference networks, analytic KL terms, and reparameterization.



Thanks!


