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Exploratory analysis of 1.7M taxi trajectories, in Stan

[Kucukelbir+ 2017]



Simulators of 100K time series in ecology, in Edward

[Tran+ 2017]



Generation & compression of 10M colored 32x32 images, in Edward

[Tran+ 2017; fig from Van der Oord+ 2016]



Cause and effect of 1.6B genetic measurements, in Edward
[in preparation; fig from Gopalan+ 2017]



Spatial analysis of 150,000 shots from 308 NBA players, in Edward

[Dieng+ 2017]



Probabilistic machine learning

• A probabilistic model is a joint distribution of hidden variables z and
observed variables x,

p(z, x).

• Inference about the unknowns is through the posterior, the conditional
distribution of the hidden variables given the observations

p(z | x) = p(z, x)
p(x)

.

• For most interesting models, the denominator is not tractable. We appeal
to approximate posterior inference.



Variational inference
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• VI solves inference with optimization.

• Posit a variational family of distributions over the latent variables,

q(z;ν)

• Fit the variational parameters ν to be close (in KL) to the exact posterior.



What is probabilistic programming?

Probabilistic programs reify models from mathematics to physical objects.

• Each model is equipped with memory (“bits”, floating point, storage) and
computation (“flops”, scalability, communication).

Anything you do lives in the world of probabilistic programming.

• Any computable model.

ex. graphical models; neural networks; SVMs; stochastic processes.

• Any computable inference algorithm.

ex. automated inference; model-specific algorithms; inference within
inference (learning to learn).

• Any computable application.

ex. exploratory analysis; object recognition; code generation; causality.



[fig. from Frank Wood]



George E.P. Box (1919 - 2013)

An iterative process for science:

1. Build a model of the science

2. Infer the model given data

3. Criticize the model given data

[Box & Hunter 1962, 1965; Box & Hill 1967; Box 1976, 1980]



Box’s Loop

Edward is a library designed around this loop.

[Box 1976, 1980; Blei 2014]



We have an active community of several thousand users & many contributors.



Model

Edward’s language augments computational graphs with an abstraction for
random variables. Each random variable x is associated to a tensor x∗,
x∗ ∼ p(x | θ∗).

Unlike tf.Tensors, ed.RandomVariables carry an explicit density with
methods such as log_prob() and sample().

For implementation, we wrap all TensorFlow Distributions and call sample to
produce the associated tensor.

[Tran+ 2017]



Example: Beta-Bernoulli

Consider a Beta-Bernoulli model,

p(x, θ) = Beta(θ | 1, 1)
50∏
n=1

Bernoulli(xn | θ),

where θ is a probability shared across 50 data points x ∈ {0, 1}50.

Fetching x from the graph generates a binary vector of 50 elements.

All computation is represented on the graph, enabling us to leverage model
structure during inference.



Example: Variational Auto-Encoder for Binarized MNIST

[Kingma & Welling 2014; Rezende+ 2014]



Example: Variational Auto-Encoder for Binarized MNIST

[Kingma & Welling 2014; Rezende+ 2014]



Example: Variational Auto-Encoder for Binarized MNIST

[Demo]



Example: Bayesian neural network for classification

[Denker+ 1987; MacKay 1992; Hinton & Van Camp, 1993; Neal 1995]



Example: Gaussian process classification

[Rasmussen & Williams, 2006; fig from Hensman+ 2013]



Inference

Given

• Data xtrain.

• Model p(x, z,β) of observed variables x and latent variables z,β.

Goal

• Calculate posterior distribution

p(z,β | xtrain) =
p(xtrain, z,β)∫

p(xtrain, z,β) dz dβ
.

This is the key problem in Bayesian inference.

edwardlib.org/tutorials

edwardlib.org/tutorials


Inference

All Inference has (at least) two inputs:

1. red aligns latent variables and posterior approximations;

2. blue aligns observed variables and realizations.

Inference has class methods to finely control the algorithm. Edward is fast
as handwritten TensorFlow at runtime.

edwardlib.org/api

edwardlib.org/api


Inference

Variational inference. It uses a variational model.

Monte Carlo. It uses an Empirical approximation.

Conjugacy & exact inference. It uses symbolic algebra on the graph.



Inference: Composing Inference

Core to Edward’s design is that inference can be written as a collection of
separate inference programs.

For example, here is variational EM.

We can also write message passing algorithms, which work over a collection
of local inference problems. This includes expectation propagation.

[Neal & Hinton 1993; Minka 2001; Gelman+ 2017]



Non-Bayesian Methods: GANs

GANs posit a generative process,

ε ∼ Normal(0, 1)
x = G(ε; θ)

for some generative network G.

Training uses a discriminative network D via the optimization problem

min
θ
max
φ

Ep∗(x)[logD(x;φ)] + Ep(x;θ)[log(1− D(x;φ))]

The generator tries to generate samples indistinguishable from true
data.

The discriminator tries to discriminate samples from the generator and
samples from the true data.

[Goodfellow+ 2014]



Example: Generative Adversarial Network for MNIST

[Demo]

http://edwardlib.org/tutorials/gan

http://edwardlib.org/tutorials/gan


Non-Bayesian Methods: GANs

[Goodfellow+ 2014]



Non-Bayesian Methods: GANs

[Arjovsky+ 2017; Gulrajani+ 2017]



Current Work



Dynamic Graphs



Distributions Backend

def pixelcnn_dist(params, x_shape=(32, 32, 3)):
def _logit_func(features):
# single autoregressive step on observed features
logits = pixelcnn(features)
return logits

logit_template = tf.make_template("pixelcnn", _logit_func)
make_dist = lambda x: tfd.Independent(tfd.Bernoulli(logit_template(x)))
return tfd.Autoregressive(make_dist, tf.reduce_prod(x_shape)))

x = pixelcnn_dist()
loss = -tf.reduce_sum(x.log_prob(images))
train = tf.train.AdamOptimizer().minimize(loss) # run for training
generate = x.sample() # run for generation

TensorFlow Distributions consists of a large collection of distributions.
Bijector enable efficient, composable manipulation of probability
distributions.

Pytorch PPLs are consolidating on a backend for distributions.

[Dillon+ 2017]



Distributed, Compiled, Accelerated Systems

Probabilistic programming over multiple machines. XLA compiler
optimization and TPUs. More flexible programmable inference.
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