An Overview of Edward: A Probabilistic Programming System

Dustin Tran Columbia University

Alp Kucukelbir

Adji Dieng

Dawen Liang

Andrew Gelman

Maja Rudolph

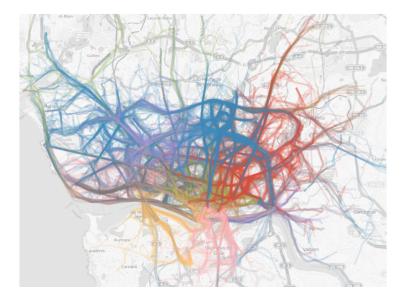
David Blei

Matt Hoffman

Rajesh Ranganath

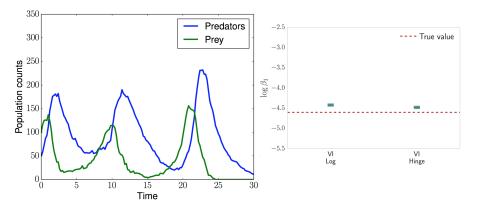
Kevin Murphy

Rif Saurous



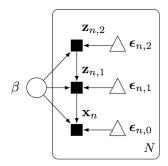
Exploratory analysis of 1.7M taxi trajectories, in Stan

[Kucukelbir+ 2017]



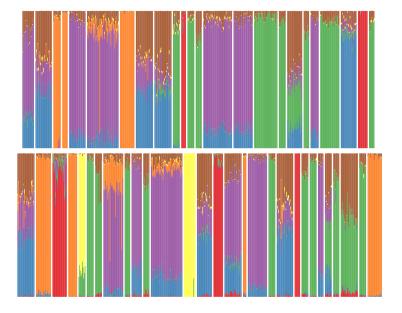
Simulators of 100K time series in ecology, in Edward

[Tran+ 2017]

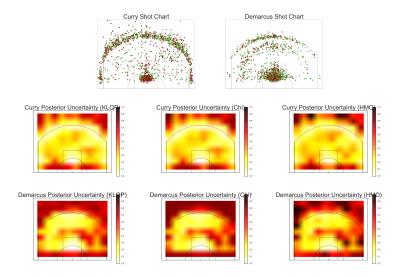


Generation & compression of 10M colored 32x32 images, in Edward

[Tran+ 2017; fig from Van der Oord+ 2016]



Cause and effect of 1.6B genetic measurements, in Edward
[in preparation; fig from Gopalan+ 2017]



Spatial analysis of 150,000 shots from 308 NBA players, in Edward

[Dieng+ 2017]

Probabilistic machine learning

• A probabilistic model is a joint distribution of hidden variables **z** and observed variables **x**,

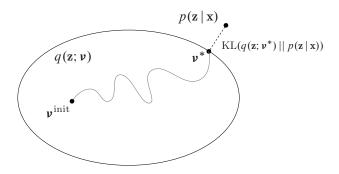
$$p(\mathbf{z}, \mathbf{x}).$$

• Inference about the unknowns is through the **posterior**, the conditional distribution of the hidden variables given the observations

$$p(\mathbf{z} \mid \mathbf{x}) = \frac{p(\mathbf{z}, \mathbf{x})}{p(\mathbf{x})}.$$

• For most interesting models, the denominator is not tractable. We appeal to **approximate posterior inference**.

Variational inference



- VI solves inference with optimization.
- Posit a variational family of distributions over the latent variables,

 $q(\mathbf{z}; \boldsymbol{\nu})$

• Fit the variational parameters u to be close (in KL) to the exact posterior.

What is probabilistic programming?

Probabilistic programs reify models from mathematics to physical objects.

• Each model is equipped with memory ("bits", floating point, storage) and computation ("flops", scalability, communication).

Anything you do lives in the world of probabilistic programming.

• Any computable model.

ex. graphical models; neural networks; SVMs; stochastic processes.

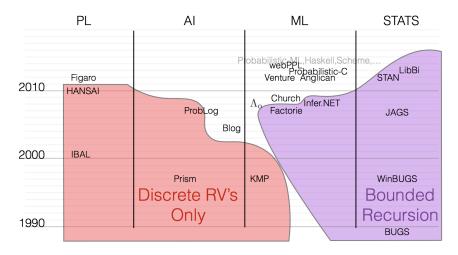
• Any computable inference algorithm.

ex. automated inference; model-specific algorithms; inference within inference (learning to learn).

• Any computable application.

ex. exploratory analysis; object recognition; code generation; causality.

Languages and Systems



[fig. from Frank Wood]

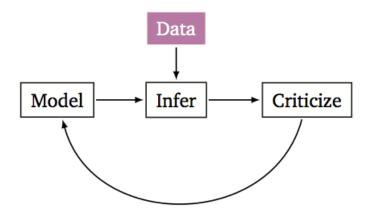
George E.P. Box (1919 - 2013)

An iterative process for science:

- 1. Build a model of the science
- 2. Infer the model given data
- 3. Criticize the model given data

[Box & Hunter 1962, 1965; Box & Hill 1967; Box 1976, 1980]

Box's Loop



Edward is a library designed around this loop.

[Box 1976, 1980; Blei 2014]

⊫ biei-	lad / edward		Watch 245	★ Star 3,040	Y Fork 526		
<> Cor	de 🕕 Issues 117 🕅 P	ull requests 23 Insights					
	y for probabilistic modeling Flow. http://edwardlib.org	, inference, and criticism. Deep ge	nerative models, variational infere	ence. Runs on			
bayesia	n-methods deep-learning	machine-learning data-science ter	nsorflow neural-networks statistics	probabilistic-pro	gramming		
	⑦ 1,761 commits	¥ 19 branches	♥ 27 releases	11 66 con	tributors		
Branch:	New pull request]		Find file CI	one or download 🕶		
S chr	ristopherlovell committed with c	lustinvtran fixed invgamma_normal_mh e	xample (#793)	Latest commit 081	ea53 23 days ago		
doc	docker Use Observations and remove explicit storage of data files (#751)				3 months ago		
🖿 doc	docs Revise docs to enable spaces in filepaths; update travis with tf==1.4			26 days ago			
•			//////	Sign Up 🔺	 Log In Q ≡		
all categ	gories > Latest Top						
Topic			Category Users	Replies	Views Activity		
Iterative	e estimators ("bayes filters") in E	Edward?	🐲 🕕 🕼	5	21 7h		
Tutorial	for multiple variational methods	s using Poisson regression?	() ()	2	20 1d		
hu 🤇	blei-lab/edward Al	iibrary for probabilistic modeling, inference, a	and criticism. http://edwardlib.org		🌐 🕁 🕪	1	
ף א מ	Would you be able to tell me native tensorflow graphdefs	redward, the library and surrounding literatu e whether it'd be relatively painless to get the and use them on mobile platforms? Or woul	inference compute graphs from Ed as	PEOPLE REPO		• 🖬	

We have an active community of several thousand users & many contributors.

Model

Edward's language augments computational graphs with an abstraction for random variables. Each random variable \mathbf{x} is associated to a tensor \mathbf{x}^* ,

 $\mathbf{x}^* \sim p(\mathbf{x} \mid \theta^*).$

- 1 # univariate normal
- 2 Normal(loc=0.0, scale=1.0)
- 3 # vector of 5 univariate normals
- 4 Normal(loc=tf.zeros(5), scale=tf.ones(5))
- 5 # 2 x 3 matrix of Exponentials
- 6 Exponential(rate=tf.ones([2, 3]))

Unlike tf.Tensors, ed.RandomVariables carry an explicit density with methods such as log_prob() and sample().

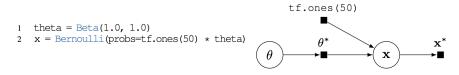
For implementation, we wrap all TensorFlow Distributions and call sample to produce the associated tensor.

Example: Beta-Bernoulli

Consider a Beta-Bernoulli model,

$$p(\mathbf{x}, \theta) = \text{Beta}(\theta \mid 1, 1) \prod_{n=1}^{50} \text{Bernoulli}(x_n \mid \theta),$$

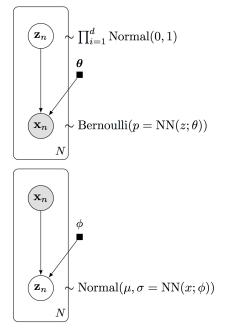
where θ is a probability shared across 50 data points $\mathbf{x} \in \{0, 1\}^{50}$.



Fetching **x** from the graph generates a binary vector of 50 elements.

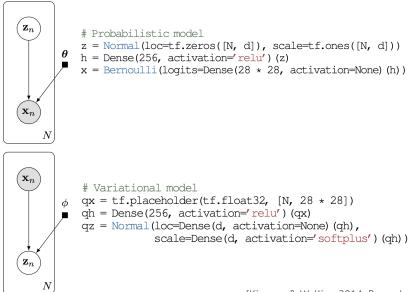
All computation is represented on the graph, enabling us to leverage model structure during inference.

Example: Variational Auto-Encoder for Binarized MNIST



[Kingma & Welling 2014; Rezende+ 2014]

Example: Variational Auto-Encoder for Binarized MNIST

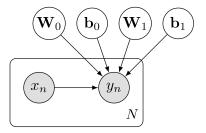


[Kingma & Welling 2014; Rezende+ 2014]

Example: Variational Auto-Encoder for Binarized MNIST

[Demo]

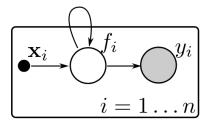
Example: Bayesian neural network for classification

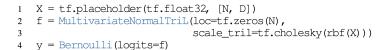


```
1 W_0 = Normal(mu=tf.zeros([D, H]), sigma=tf.ones([D, H]))
2 W_1 = Normal(mu=tf.zeros([H, 1]), sigma=tf.ones([H, 1]))
3 b_0 = Normal(mu=tf.zeros(H), sigma=tf.ones(L))
4 b_1 = Normal(mu=tf.zeros(1), sigma=tf.ones(1))
5
6 x = tf.placeholder(tf.float32, [N, D])
7 y = Bernoulli(logits=tf.matmul(tf.nn.tanh(tf.matmul(x, W_0) + b_0), W_1) + b_1)
```

[Denker+ 1987; MacKay 1992; Hinton & Van Camp, 1993; Neal 1995]

Example: Gaussian process classification





[Rasmussen & Williams, 2006; fig from Hensman+ 2013]

Inference

Given

• Data \mathbf{x}_{train} .

• Model $p(\mathbf{x}, \mathbf{z}, \beta)$ of observed variables \mathbf{x} and latent variables \mathbf{z}, β .

Goal

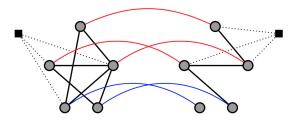
Calculate posterior distribution

$$p(\mathbf{z}, \boldsymbol{\beta} \mid \mathbf{x}_{\text{train}}) = \frac{p(\mathbf{x}_{\text{train}}, \mathbf{z}, \boldsymbol{\beta})}{\int p(\mathbf{x}_{\text{train}}, \mathbf{z}, \boldsymbol{\beta}) \, d\mathbf{z} \, d\boldsymbol{\beta}}.$$

This is the key problem in Bayesian inference.

edwardlib.org/tutorials

Inference



All Inference has (at least) two inputs:

- 1. red aligns latent variables and posterior approximations;
- 2. blue aligns observed variables and realizations.

inference = ed.Inference({beta: gbeta, z: qz}, data={x: x_train})

Inference has class methods to finely control the algorithm. Edward is fast as handwritten TensorFlow at runtime.

edwardlib.org/api

Inference

Variational inference. It uses a variational model.

Monte Carlo. It uses an Empirical approximation.

```
1 T = 10000 # number of samples
2 qbeta = Empirical(params=tf.Variable(tf.zeros([T, K, D]))
3 qz = Empirical(params=tf.Variable(tf.zeros([T, N]))
4
5 inference = ed.MonteCarlo({beta: qbeta, z: qz}, data={x: x_train})
```

Conjugacy & exact inference. It uses symbolic algebra on the graph.

Inference: Composing Inference

Core to Edward's design is that inference can be written as a collection of separate inference programs.

For example, here is variational EM.

```
deta = PointMass(params=tf.Variable(tf.zeros([K, D])))
qz = Categorical(logits=tf.Variable(tf.zeros[N, K]))
inference_e = ed.VariationalInference({z: qz}, data={x: x_data, beta: qbeta})
inference_m = ed.MAP({beta: qbeta}, data={x: x_data, z: qz})
for _ in range(10000):
    inference_e.update()
    inference_m.update()
```

We can also write message passing algorithms, which work over a collection of local inference problems. This includes expectation propagation.

Non-Bayesian Methods: GANs

GANs posit a generative process,

 $oldsymbol{\epsilon} \sim \mathsf{Normal}(0,1)$ $oldsymbol{x} = \mathcal{G}(oldsymbol{\epsilon}; heta)$

for some generative network G.

Training uses a discriminative network D via the optimization problem

$$\min_{\theta} \max_{\phi} \mathbb{E}_{p^*(\mathbf{x})}[\log D(\mathbf{x};\phi)] + \mathbb{E}_{p(\mathbf{x};\theta)}[\log(1 - D(\mathbf{x};\phi))]$$

The generator tries to generate samples indistinguishable from true data.

The discriminator tries to discriminate samples from the generator and samples from the true data.

Example: Generative Adversarial Network for MNIST

[Demo]

http://edwardlib.org/tutorials/gan

Non-Bayesian Methods: GANs

```
def generative network (eps):
1
      h = Dense(256, activation='relu') (eps)
2
3
      return Dense(28 \times 28, activation=None) (h)
4
5
    def discriminative network (x):
      h = Dense(28 * 28, activation='relu')(x)
6
      return Dense(h, activation=None) (1)
7
8
    # Probabilistic model
9
    eps = Normal(loc=tf.zeros([N, d]), scale=tf.ones([N, d]))
10
    x = \text{generative network(eps)}
11
12
13
    inference = ed.GANInference(data={x: x_train},
        discriminator=discriminative_network)
14
15
    inference.run()
```

Non-Bayesian Methods: GANs

```
def generative network(eps):
1
      h = Dense(256, activation='relu') (eps)
2
3
      return Dense(28 \times 28, activation=None) (h)
4
    def discriminative network (x):
5
      h = Dense(28 * 28, activation='relu')(x)
6
7
      return Dense(h, activation=None)(1)
8
9
    # Probabilistic model
    eps = Normal(loc=tf.zeros([N, d]), scale=tf.ones([N, d]))
10
    x = qenerative network(eps)
11
12
    inference = ed.WGANInference(data={x: x train},
13
14
        discriminator=discriminative_network)
    inference.run()
15
```

Current Work

Dynamic Graphs

Probabilistic Torch is library for deep generative models that extends PyTorch. It is similar in spirit and design goals to Edward and Pyro, sharing many design characteristics with the latter.

The design of Probabilistic Torch is intended to be as PyTorch-like as possible. Probabilistic Torch models are written just like you would write any PyTorch model, but make use of three additional constructs:

Distributions Backend

```
def pixelcnn_dist(params, x_shape=(32, 32, 3)):
    def _logit_func(features):
        # single autoregressive step on observed features
        logits = pixelcnn(features)
        return logits
        logit_template = tf.make_template("pixelcnn", _logit_func)
        make_dist = lambda x: tfd.Independent(tfd.Bernoulli(logit_template(x)))
        return tfd.Autoregressive(make_dist, tf.reduce_prod(x_shape)))
x = pixelcnn_dist()
loss = -tf.reduce_sum(x.log_prob(images))
train = tf.train.AdamOptimizer().minimize(loss)  # run for training
    generate = x.sample()  # run for generation
```

TensorFlow Distributions consists of a large collection of distributions. Bijector enable efficient, composable manipulation of probability distributions.

Pytorch PPLs are consolidating on a backend for distributions.

Distributed, Compiled, Accelerated Systems



Probabilistic programming over multiple machines. XLA compiler optimization and TPUs. More flexible programmable inference.

References

edwardlib.org

- Edward: A library for probabilistic modeling, inference, and criticism. arXiv preprint arXiv:1610.09787, 2016.
- Deep probabilistic programming. International Conference on Learning Representations, 2017.
- TensorFlow Distributions. arXiv preprint arXiv:1711.10604, 2017.