
CS 282r: Reinforcement Learning

Instructor: Finale Doshi-Velez

Dustin Tran

Spring 2015

Contents

Preface iv

Lecture 01 – Introduction to Reinforcement Learning 1

Lecture 02 – Markov decision processes (MDPs) and how to solve them 02-2

2.1 Markov decision processes (MDPs) . 02-2

2.2 Given a policy: induced process value . 02-2

2.3 Improving/optimal policies . 02-3

Lecture 03 – Monte Carlo approaches 03-5

3.1 Monte Carlo approahces . 03-5

3.1.1 Policy evaluation . 03-5

3.2 Concept check . 6

Lecture 04 – Temporal difference (TD) methods 04-7

4.1 Practical 0 discussion . 04-7

4.2 TD methods . 04-7

4.3 Concept check . 04-8

Lecture 05 – E3 algorithm 05-10

5.1 Discussion . 05-10

5.2 Main idea of E3 . 05-10

5.2.1 Simulation lemma . 05-11

5.2.2 Exploit or explore lemma . 05-11

5.3 Concept check . 05-12

Lecture 06 – R-MAX, Thompson sampling 06-14

6.1 A brief overview of the course . 06-14

6.2 R-MAX . 06-14

6.3 Thompson sampling . 06-14

6.4 Concept check: Shaping rewards . 06-15

Lecture 07 – BOSS, MBIE 07-17

7.1 MBIE (Model-based Interval Exploration) . 07-17

7.2 BOSS (Best of Sampled Set) . 07-18

7.3 Concept check . 07-18

ii

CONTENTS iii

Lecture 08 – KWIK 08-20
8.1 Logistics . 08-20
8.2 Knows What It Knows (KWIK) . 08-20

8.2.1 KWIK for MDPs . 08-20
8.3 Concept check . 21

Preface

This document is a compilation of lecture notes for Professor Finale Doshi-Velez’s CS 282r course in Har-
vard, during the term of Spring 2015. I do not claim these notes to be fully accurate or comprehensive,
nor do I claim this document holds any officiality over the course. It contains exposition subject to my
discretion. Please send feedback, corrections, etc. to dtran@g.harvard.edu. More broadly, I can be reached
at dustintran.com.

iv

CONTENTS 1

CS 282r: Reinforcement Learning Lecture 01

Introduction to Reinforcement Learning
Lecturer: Finale Doshi-Velez Date: January 29, 2015

Motivation behind RL using an example of finding the optimal way to reach Harvard from Central Square
(various routes of public transportation and walking), logistics of the course, a demo in class, brief description
of Markov decision processes.

02-2 CONTENTS

CS 282r: Reinforcement Learning Lecture 02

Markov decision processes (MDPs) and how to solve them
Lecturer: Finale Doshi-Velez Date: February 3, 2015

2.1 Markov decision processes (MDPs)

We follow Sutton & Barto, Ch. 3-4. Recall that a Markov decision process (MDP) depends on the collection
of sets

{S,A,R, T, γ}, (2.1)

where S is the states, A the actions, R = R(s, a, s′) the reward function, T = T (s′ | s, a), and γ the discount
factor in [0, 1]. Note that T depends only on the action and the state of the most recent, not the entire
history. It is also commonly used as P (s′ | s, a).

Figure 1
Goal: maxE[

∑∞
t=0 γ

trt] using the policy π(a|s). One can marginalize the action: P (s′|s) =
∑
a π(a|s)T (s′|s, a),

which is called a Markov process, or Markov chain.

Property 2.1 (Markov chains). Let Pss′ be the transition matrix P (s→ s′), (Pss′)
m be P (s→ s′ after m steps).

• Can we get from any s to any s′? If yes, then the Markov chain is ergodic, or a uni-chain.

• Can we get ”stuck”? If yes, then this is called the absorbing state.

Definition 2.2. p(s) is a stationary distribution if where p(s′) =
∑
s p(s

′ | s)p(s), p(s) = p(s′).

Figure 2. Stationary distribution is (0, 0.5, 0.5)T .

Theorem 2.3. The limiting distribution of a Markov chain where m→∞ is a stationary distribution.

Note that (Pss′)
m = ADmAT , where D is some matrix with eigenvalues on the diagonal. The largest

eigenvalue is always 1xx TODO: xx , and thus the second largest eigenvalue determines the convergence
rate as it decays the slowest.

2.2 Given a policy: induced process value

Recall that each ri leads to a new state si+1, and thus we are concerned with evaluating a policy. We define
the value function

V π(s) = E
[∞∑
t=0

γtrt | start in s, do π
]

(2.2)

and the action-value function

Qπ(s, a) = E
[∞∑
t=0

γtrt | start in s, do a, do π
]

(2.3)

The value function estimates how good it is for the agent to be in a given state, and the action-value function
estimates how good it is to perform a given action in a given state. Note that both are difficult to calculate
as it sums over infinite time and there is the assumption that one knows the transition matrix.

2.3. IMPROVING/OPTIMAL POLICIES 02-3

V π(s) =
∑
a

π(a | s)
∑

s′P (s′ | s, a)[r(s, a, s′) + γE[
∑

γtrt from s′] (2.4)

=
∑
a

π(a | s)
∑

s′P (s′ | s, a)[r(s, a, s′) + γV π(s′)] (2.5)

(??) is known as the Bellman equation. One can solve this by rearranging this into a linear system, or by
using dynamic programming. We can use the iterative scheme

Vk+1 =
∑
a

π(a | s)
∑

s′P (s′ | s, a)[r(s, a, s′) + γVk] (2.6)

We can use this to model nonstationary distributions. One can also prove that the value update will
converge to V π(s) using what is known as the contraction property :

(a) Define the Bellman operator, i.e., the update, as TV → V ′.

(b)

Claim 2.4. ‖TV − TV ′‖∞ ≤ γ‖V − V ′‖.
[Contraction property]

‖TV − TV ′‖∞ = ‖
∑
a

π(a | s)
∑

s′P (s′ | s, a)[r(s, a, s′) + γV (s′)]−
∑
a

π(a | s)
∑

s′P (s′ | s, a)[r(s, a, s′) + γV ′(s′)]‖

(2.7)

= ‖
∑
a

π(a | s)
∑

s′P (s′ | s, a)[γ(V (s′)− V ′(s′))]‖ (2.8)

≤
∑
a

π(a | s)
∑

s′P (s′ | s, a)γ‖V (s′)− V ′(s′)‖∞ (2.9)

= γ‖V (s′)− V ′(s′)‖∞ (2.10)

(2.11)

2.3 Improving/optimal policies

(a) One can compute V π with the Bellman operator.

(b)

Theorem 2.5 (Policy improvement theorem). If Qπ(s, π′(s)) ≥ Vπ(s), then Vπ′(s) ≥ Vπ(s).

Qπ(s, a) =
∑

s′P (s′ | s, a)[r(s, a, s′) + γE[
∑

γtrt from s′]

Choose π′ that maximizes Qπ(s, a). Can show that if Vπ′(s) = Vπ(s), then π and π′ are optimal.
To decide on the next policy, one can thus use the Bellman operator criterion:

Vπ′(s) = max
a

∑
s′

P (s′ | s, a)[R(s, a, s′) + γVπ(s)] = max
a

Vπ(s′)

Note that this is computationally tractable and furthermore can be found in polynomial time! This is better
than the naive approach of combinatorially checking each branch of decisions individually.

4 CONTENTS

(a) Policy iteration xx TODO: longer arrows for labels xx

π →evaluation V →improve π′ → π′′ → V ′′ → · · ·

(b) Value iteration

Vk+1(s)← max
a︸︷︷︸

improve

∑
s′

p(s′ | a, s)[r(s, a, s′) + γVk(s′)]︸ ︷︷ ︸
evaluation

That is, it does improvement and evaluation in one step.

(c) Linear programming, which is used most in the old literature. Let µ(s) > 0 for all s.

min
V (s)

∑
s

µ(s)V (s) s.t. V (s) ≥
∑
s′

P (s′ | s, a)[R(s, a, s′) + γV (s′)]

In the end, all three are equivalent deterministic methods. Randomized approaches allow one to solve these
reasonably efficiently with approximations.

Next time: Monte Carlo approaches (Sutton & Barto, Ch. 5, 6 Intro to TD)

• No reading response.

• There will be a concept check!

3.1. MONTE CARLO APPROAHCES 03-5

CS 282r: Reinforcement Learning Lecture 03

Monte Carlo approaches
Lecturer: Finale Doshi-Velez Date: February 5, 2015

Today:

(a) Demo: We see a program showing policy and value iteration in practice in order to solve paths to reach
an endpoint in a maze.

(b) Practice concept check

(c) Monte Carlo approaches

(d) Real check

xx TODO: Exercises! xx

3.1 Monte Carlo approahces

Two cases: Policy evaluation (given π) and control (find optimal π)

3.1.1 Policy evaluation

(a) Generate a sequence s1r1s2r2 · · ·

(b) What state do we want the value for? Denote it as state s∗. For example, say it’s at s3.

(c) Look at all rewards after 1st occurrence of s∗. The discounted return is

G = r3 + γr4 + γ2r5 + · · ·

(d) Do this m times. Then for sufficiently large simulations m,

V (s∗) =
∑
m

Gm

This is an unbiased estimator, and note that the convergence does upon the variance of the estimate.
For policy improvement, we need Q(s, a). If you set your simulator, ”exploring starts” by obtaining a

large number of s∗a∗ → ...→ G is possible as it will be a consistent estimator but it is not practical.
Can we do better, i.e., without requiring setting the simulator? There are two approaches: on-policy, try

to improve from what we have π → π′, versus off-policy, try to evaluate/find π∗/π′ given π.
On-policy: How do we always ensure that we see Q(s, a) for all possible actions a? One approach is

ε-greedy action selection. Suppose we have a run with an ε-greedy policy π. Then for Qπ(s, a) estimated
from m runs,

Q(s, π′(s)) =
∑
a

π′(a | s)Qπ(s, a) (3.12)

=
ε

|A|
∑
a

Qπ(s, a) + (1− ε) (3.13)

= · · · (3.14)

≥
∑
a

π(s | a)Qπ(s, a) = V (s) (3.15)

6 CONTENTS

Off-policy: Suppose we have an explore policy π(a | s) > 0 and we aim to evaluate some π′. Let ST be
the sequence sarar · · · for T . Then

p(ST) =

T∏
t=1

π(at | st)p(st+1 | st,a) (3.16)

We thus aim to compute Eπ′ [
∑
γtrt]. We can obtain draws from another policy π by applying importance

sampling:

Eq[f(x)] =
∑
x

q(x)f(x) (3.17)

=
∑
x

q(x)

p(x)
p(x)f(x) (3.18)

= Ep[
q(x)

p(x)
f(x)] (3.19)

≈ 1

N

N∑
x∼p

q(x)

p(x)
f(x) (3.20)

Thus we have

1/N

N∑ ∏
π′(at | st)p(st+1 | st, at)∏
π(at | st)p(st+1 | st, at)

G = 1/N

N∑ ∏
π′(at | st)∏
π(at | st)

G (3.21)

3.2 Concept check

xx TODO: xx
xx TODO: enumerate xx 1. Write down as MDP. What is the state space? 2. What might the form of

the optimal policy look like? 3. Compute the value of the policy ”always quit” for current points being 0,
1, 2, 3, 4, 5, 6. 4. Write down equation

xx TODO: transfer everything from paper xx
Next time: TD Methods (Sutton & Barto, Ch. 6, parts of 7)

4.1. PRACTICAL 0 DISCUSSION 04-7

CS 282r: Reinforcement Learning Lecture 04

Temporal difference (TD) methods
Lecturer: Finale Doshi-Velez Date: February 12, 2015

4.1 Practical 0 discussion

Recall that the main update in the SARSA algorithm is

Q(s, a)← Q(s, a) + α(R(s, a) + γQ(s′, a′)−Q(s, a)) (4.22)

• The learning rate α has a huge effect and should not be a constant intuitively, as it should decay with
the number of iterations, i.e.,

∑
αi =∞,

∑
α2
i <∞.

• Comparing rewards over episodes to cumulative rewards over iterations: The former displays conver-
gence based on value where it ends and thus more easily determines convergence rate compared to
other algorithms;; the latter displays which algorithm performs better in the long run.

Figure 4.1: Example of an MDP.

4.2 TD methods

Recall that there is a value function and action-value function

Vπ(st) = Eπ[
∑

γtrt | s = st]︸ ︷︷ ︸
Monte Carlo simulation

= Eπ[rt + γVπ(st+1) | st]︸ ︷︷ ︸
value iteration/dynamic prog.

(4.23)

The advantage of Monte Carlo methods is that it does not require explicit information about the model,
although value iteration is faster given such an assumption by using previously stored values via Vπ(st+1 |st).
TD methods are a compromise between both:

V (s)← V (s) + α(R+ γV (s′)− V (s)) (4.24)

It still uses some sample s′, but it does not traverse the whole world in order to make a decision.

04-8 CONTENTS

Figure 4.2: Comparison of TD, MC, and DP by the states each moves to in order to form an update.

Example 4.6. There are two states A and B. At B, get r = 0 one time, r = 1 6 times. At A we go to B
and get 0. Then the value of B is 6/8 = 3/4, and the value of A is either 3/4 according to TD or 0 according
to MC.

Using an ε-greedy policy with respect to Q, there is an on-policy and off-policy learning procedure for
TD. SARSA:

Q(s, a)← Q(s, a) + α(R+ γQ(s′, a′)−Q(s, a));w (4.25)

Q-learning :

Q(s, a)← Q(s, a) + α(R+ γmax
a′′

Q(s′, a′′)−Q(s, a));w (4.26)

4.3 Concept check

Let α = 1 and γ = 1. Set the initial values V0 as follows:

(a) What would one step of value iteration do? Write down the update equation and the V1.

Vk+1(s) = max
a

∑
s′

p(s′ | a, s)[r(s, a) + γVk(s′)] (4.27)

(b) What would MC with ABCF do? Write down the update equation and V1.

(c) What would TD with ABCF do? Write down the update equation and V1.

(d (test)) Consider a version of TD that uses two steps of experience instead of one.

Vk+1(s) = R(s) + γR(s′) + γ2V (s′′)− V (s) (4.28)

4.3. CONCEPT CHECK 9

Interestingly, this extends to a TD(λ) family of algorithms, where we classify TD error as

R(s1) + γR(s2) + γ2R(s3) + · · ·+ γnV (sn+1)︸ ︷︷ ︸
G(n)

−V (s) (4.29)

The trade-off is to look more ahead but less bias. Moreover, one can show that

‖Eπ[G(n)]− Vπ(s)‖∞ ≤ γn‖V (s)− Vπ(s)‖∞ (4.30)

For λ ∈ [0, 1], the TD(λ) update proceeds as follows:

V (s)← V (s) + α[(1− λ)

∞∑
n=1

λnGn(t) (4.31)

λ = 1 corresponds to MC and λ = 0 corresopnds to TD(0).
Next time: E3 paper. Focus specifically on Section 5 and 5.1. There will be a concept check on it too.

05-10 CONTENTS

CS 282r: Reinforcement Learning Lecture 05

E3 algorithm
Lecturer: Finale Doshi-Velez Date: February 17, 2015

5.1 Discussion

• Create an algorithm for MDPs that has finite/polynomial resources

• Important idea - mixing time of a policy π

• Known and unknown states, with balanced wandering for exploration

• Assumption: know optimal policy value (valid?): if you always explore some, then you don’t need this
assumption

5.2 Main idea of E3

The main influence in the paper aside from the polynomial time guarantee is to define states as known and
unknown. Known states are constructed into a subset of the MDP as MS , the known MDP, which has
transitions between known that are the same as the MDP. Unknown simply does balanced wandering. Let
M̂S be an approximation of the MS . As we shall see later in the course, more sophisticated algorithms
use the same concept, but generalized where states can be roughly known or unknown, and to what extent
inbetween.

Figure 5.3: Induced Markov decision process MS in the larger Markov decision process M .

Thus we solve two policies.

(a) Exploit policy, set Runknown = 0. Will exploit in MS .

(b) Explore policy, set Runknown = Rmax. Will try to go to unknown.

Notation used in paper:

1. MDPs: P aM (i, j) = PM (j | i, a), 0 < RM (i) < Rmax.

5.2. MAIN IDEA OF E3 05-11

2. Policies: map π : {1, . . . , N} → {a1, . . . , aK}.

3. T-path: p : i1, i2, . . . , iT+1. Note that is fixed/given. Given a MDP M and a policy π, we can evaluate

the probability of a T -path PπM [p] =
∏T
k P

π(k)
M (ikik+1).

4. return for MDP M is UM , where

UM (p) =
1

T
[Ri + · · ·+Ri+T] (5.32)

UπM (i, T) =
∑
p

PπM [p]UM [p] (5.33)

The sum sums over all paths starting at i going T steps. Let UKM be the optimal value and UπM is the
value for π as T →∞.

5. (Weak) mixing time T
minT s.t. |UπM (i, T)− UπM | < ε for all i

This is ”weaker” than the actual mixing time of MDP, as it only needs to mix for some subset of MDP
that discovers the optimal policy.

Questions

1. Does a path in M̂S get similar rewards to a path in MS? (Simulation lemma)

2. Can we exploit in MS or quickly escape? (Exploit or explore lemma)

5.2.1 Simulation lemma

Definition 5.7. M̂ is an α-approximation of the MDP M if for all i, R
M̂

(i) ∈ RM (i) ± α and Pα
M̂

(i, j) ∈
P aM (i, j)± α. Note that α is used in two places to mean two different values.

Lemma 5.8 (Simulation lemma). How small does α have to be for Uπ
M̂

(i, T) to be within UM (i, T)± ε with
probability 1− δ?

Proof. If within α, how does that translate into ε? Consider all paths p. Some will involve a β-small
transition (unlikely paths), i.e., we will bound all paths with small probability by the value

β︸︷︷︸
pr(small)

N︸︷︷︸
num. states

T︸︷︷︸
T times

GTmax︸ ︷︷ ︸
max value

This comes from P (A ∪B) ≤ P (A) + P (B), where we upper bound all such β-small transitions of T paths.
Other paths are not small: P

M̂
(i, j) is within PM (i, j)±α implies PM (i, j)(1+∆), where ∆ = α/β. Then

since PπM [p] =
∏
PπM (i, j), then Pπ

M̂
[p] is within (1 + δ)TPπM [p]. Similarly, U

M̂
[p] is within UM [p]± α, which

implies Uπ
M̂

is within (1 + ∆)T [UMπ (i, T)− α]− ε/4, where the first term regards big paths and second term
regards small paths. Then we can use this to choose α such that we have error ε.

5.2.2 Exploit or explore lemma

We first require the following property.

Property 5.9 (Hoeffding bound on Bernoulli variables). If Z1, . . . , Zn are i.i.d. Bernoulli r.v.s {0, 1} with
probability p, then

P (|p̂− p| > ε) ≤ exp(−2Nε2)

05-12 CONTENTS

Let δ be the LHS. Then N = 1/(2ε2) ln(1/δ)
Consider the two state example, transitioning to two different states each with probabilities p and q

respectively. Let p̂ be within p± ε. |p̂− q̂| = |p− q|+ 2ε, by expanding |(p+ ε)− (q − ε)|.
Thus there are two sources of error: δA, δB . If we want δ = δA + δB , consider δA = δB = δ/2, εA = εB =

ε/2.

Lemma 5.10 (Exploit or explore lemma). Can we exploit in MS or quickly escape?

Proof. Suppose there exists a situation

Uπ
∗

MS
(i, T) < Uπ

∗

M (i, T)− α,

where π∗ is optimal in M . See rest of proof in paper.

5.3 Concept check

Figure 5.4: Markov decision process with starting point at state S with action space {A,B,C}. Rewards are
denoted by the node label.

Let discount factor be denoted as γ.

Exercise 5.11. What is the value of policies A,B,C?

Solution. • Path A: Vπ(st) = 4 + γ4 + γ24 + · · · = 4
∑∞
t=0 γ

t = 4/(1− γ).

• Path B: Vπ(st) = 5 + γ + γ25 + γ3 + · · · = 5
∑∞

t even γ
t +

∑∞
t odd γ

t = 5
∑∞

t even γ
t + γ

∑∞
t even γ

t =
5/(1− γ2) + γ/(1− γ2)

• Path C: Vπ(st) = 0 + 5γ/(1− γ2).

Exercise 5.12. When is it better to do B instead of A?

Solution. Recall
∑∞
t=0 γ

t = 1/(1− γ).
To see when it’s better to do B, compare γ when

4/(1− γ) ≤ 5/(1− γ2) + γ/(1− γ2)

For γ > 4/5, prefer C, and for γ < 1/3, prefer B.

5.3. CONCEPT CHECK 13

Exercise 5.13 (Concept check). Undiscounted case with fixed time T . When is A, B, or C best?

Solution. A is best for 2 to 4, B for 1, C for 5 onwards

06-14 CONTENTS

CS 282r: Reinforcement Learning Lecture 06

R-MAX, Thompson sampling
Lecturer: Finale Doshi-Velez Date: February 19, 2015

6.1 A brief overview of the course

• Introduced RL framework, composed of an agent acting on the world and receiving states and rewards;
this is formalized by MDPs.

• One way of solving them is by using the Bellman equation.

• Model-free: SARSA, Q-learning (TD methods) in order to directly compute

• Model-based: E3, R-MAX, Thompson sampling in order to build an approximate model and solve

Next we shall see more model-based methods which are more intelligent about the in-between of not
being completely known or unknown. Then extensions: how to set parameters; large state spaces; batch
methods

6.2 R-MAX

Figure 6.5: R-MAX

Why does this work? (Simulation lemma) Known MDPs are approximately the true one for returns; we
will explore quickly, i.e., P (go to unknown) > ε. Note that unlike E3, R-MAX does not necessarily explore
all spaces, as a significant enough discount factor can cause it to stay with the short term.

6.3 Thompson sampling

All previous model-based approaches we’ve encountered have been frequentist, i.e., there is a belief of a true
parameter specifying the MDP and we reduce the bounds of our confidence interval. Thompson sampling is
an example of a Bayesian method, which specifies a prior on one’s belief about what the MDP is most like,
which updates it with data and obtains a posterior.

Assume rewards are deterministic (for simplicity only; it may be generalized). Specify a prior over
transitions.

6.4. CONCEPT CHECK: SHAPING REWARDS 06-15

Figure 6.6: Treating transitions P (s′ | s, a) as count proportions represented under a multinomial distribution.

Hence we can represent transitions for a state-action pair as multinomial, and apply a Dirichlet distribu-
tion, in which a sample from a Dirichlet represents sampling a single MDP.

Figure 6.7: Example with strongly misspecified prior distribution.

Asymptotically, the prior does not matter but for finite N or a strong discount factor γ, it is very hard
to overcome the biases. Note that for high pseudocounts, say, one million on each category of αk, then we
are strongly sure that all transition probabilities are uniform. If the prior is weak, then it doesn’t as strongly
affect the posterior.

6.4 Concept check: Shaping rewards

Following Ng and Russel, ”Shaping Rewards.”

Exercise 6.14. Suppose I have 2 MDPs, Q∗M (s, a) and Q∗M ′(s, a) = Q∗M (s, a) + f(s). Is the optimal policy
for M ′ the same or different than M?

Answer. Consider Q(s, ·), which depends on arg maxaQ(s, a). Hence any change by f(s) doesn’t matter.

16 CONTENTS

Exercise 6.15. Suppose I change each reward

R′(s, a, s′) = R(s, a, s′) + Φ(s)− γΦ(s′) (6.34)

Does the optimal policy change? Hint: start with Bellman equation for Q∗M (s, a) and relate it to Q∗M ′(s, a)

Answer. By the Bellman equation,

Q∗M (s, a) = Es′ [R(s, a, s′) + γmax
a

Q∗M (s′, a′)] (6.35)

= Es′ [R(s, a, s′) + Φ(s)− Φ(s) + γΦ(s′)− γΦ(s′)γmax
a

Q∗M (s′, a′)] (6.36)

= Es′ [R′(s, a, s′)− Φ(s) + γmax
a

[Q∗M (s′, a′) + Φ(s′)]] (6.37)

Translate by Φ(s) does not matter since it is in expectation of s′, and similarly, the maximum action is not
concerned with Φ(s′).

7.1. MBIE (MODEL-BASED INTERVAL EXPLORATION) 07-17

CS 282r: Reinforcement Learning Lecture 07

BOSS, MBIE
Lecturer: Finale Doshi-Velez Date: February 24, 2015

Main idea:

• Constructing optimistic transition functions

Recall that in the RL framework, we obtain history sarsara · · · and in our approach, we construct an
approximate model, solve, etc.

Theorem 7.16 (PAC-MDP). For an algorithm to be PAC-MDP: poly(|S|, |A|, 1/ε, 1/δ, 1/(1 − γ) or T)
samples is required to perform near-optimally.

There are multiple conditions to do this:

(a) exploration: optimistic value function

(b) simulation lemma: accuracy for known states, i.e., exploit: if known, we can do well

(c) exploration ends: visits to unknown states < |S|A|B, where B ∈ R is a constant

There’s been little development on the simulation lemma, as most invoke Hoeffding’s inequality, c.f., E3 and
R-MAX.

7.1 MBIE (Model-based Interval Exploration)

For great optimistic value functions, we set optimistic transitions.

Figure 7.8: MDP starting at left, with action a corresponding to Bernoulli(p) arrive to state with reward 0 if p is
in 0.5± 0.2, reward +10 otherwise. Let’s believe p̃ = 0.7 and see what happens.

More formally, the error in the transition

T (· | s, a) ≤ d

√
k(s, a)

n(s, a)
, (7.38)

07-18 CONTENTS

Figure 7.9: Using Bernoulli(q), obtain reward 0 if q in 0.4± 0.4. Let’s say q̃ = 0.8.

where k(·, ·) is the number of states you can go to after s and do a and n(·, ·) is the number of visits to s, a.

Q(s, a) = R̂(s, a) + max
T̃∈C.I.

γ
∑
s′

T̃ (s′ | s, a) max
a′

Q(s′, a′) (7.39)

See figures in paper of its comparison to R-MAX.

7.2 BOSS (Best of Sampled Set)

1. Keep a posterior over MDPs.

2. Sample B MDPs from the posterior, where each has actions a1, . . . , ak.

3. Create optimistic MDP M#, where M# has the same states {s1, . . . , sN} and combined actions
{aij}i=1,...,B,j=1,...,k.

4. Choose an action based on the best MDP for that current state action pair.

7.3 Concept check

Reduced-order models for data-limited RL (Joseph & Roy).

Exercise 7.17. Write down value of action A B?

Answer. Once can simply compute the expectation of each state and action pair:

V A(s) = 50(1− p1)− 10p1 (7.40)

V B(s) = 5(1− p2) (7.41)

Exercise 7.18. Suppose that p1 = 1, p2 = 1/5. Compute values from part A. What is the better policy?

7.3. CONCEPT CHECK 19

Figure 7.10: P (fail) = p1, which sends us to -10, otherwise +50. P (fail) = p2 in B. Let γ = 1.

Answer. V A(s) = −10 and V B(s) = 4.

Exercise 7.19. Suppose we think p1 = p2, and we’ve seen A 1 try, 1 fail and B 4 tries, 4 success. What is
p̂MLE What is the optimal policy given p̂MLE?

Answer. Since p1 = p2, then p̂MLE = 1/5. Then the optimal policy given it is A since 50(1−1/5)−10(1/5) >
5(1− 1/5).

Exercise 7.20. Is there a value of p̂ in the misspecified model that still provides the optimal policy (choose
B)? If not, explain why. If so, give an example.

Answer. By direct calculation, one can show that in order to guarantee that the optimal policy of B is
greater than A, given p̂, then p̂ > 45/55. So yes.

08-20 CONTENTS

CS 282r: Reinforcement Learning Lecture 08

KWIK
Lecturer: Finale Doshi-Velez Date: February 26, 2015

8.1 Logistics

For Thompson sampling, only consider uncertainty in transitions. Practical 1 will be out of 13 points; 8
points relating to results and 8 relating to discussion.

Final projects

• More parameter exploration

– Papers on optimal parameters

– Bayesian optimization of parameters

• Choose a domain and try to solve it

– Othello, Tetris, AI

– Other large/real domain

• Theoretical

– Extensions of stuff from class (transfer learning)

– Literature review with in-depth discussion

MDP extensions: function approximations/larger MDPs, batch methods.

8.2 Knows What It Knows (KWIK)

Refer to the diagram comparing PAC, MB, and KWIK in the paper.

Example 8.21 (Conjunction learning). Input is a sequence of binary values 001001100. Output: true or
false. Hypothesis class: if a certain conjunction is present, predict true, e.g., if d1 and d2 and d5, predict
true.

Proof. MB: guess false always. If false, then you’re okay. If true. Know any bit in string that’s 0 cannot be
part of conjunctions. Rule out all possibilities for each dim. Hence linear complexity.

KWIK: Because you can’t make any mistakes, the adversary can keep providing you a bunch of False’s,
from which you will learn very little about. For a string of length n, there are 2n−1 possible scenarios where
you cannot learn anything. Hence exponential complexity.

8.2.1 KWIK for MDPs

Algs: If hypothesis class or inpute class are finite of size S, KWIK learns in S. (trivial)
Coin tossing to learn p(heads). With noisy labels {0, 1}, one can apply Hoeffding bounds.
Taking unions of KWIK learners on disjoin input spaces:

B(ε, δ) =

k∑
i

Bi(ε, δ/k) (8.42)

8.3. CONCEPT CHECK 21

Say you have K coints, adversary picks the coin, you have to predict p(heads).
MDP case:

1. Any MDP with uncertain transitions and rewards, but where there exist finite set of possible rewards
{rL, rM , rH}. Can map to MDP’ with just uncertain transitions. To do this, simply augment your
MDP by a factor of 3, i.e., for each possible state have (si, rL), (si, rM), (si, rH).

2. Learning an uncertain transition, which corresponds to learning a bunch of coin flips. (s, a, s′)→ p.

8.3 Concept check

Related to practical 1.

Figure 8.11: Cliffworld example. Walls are the blacked out boxes with no numeric annotated in them.

Let α be your transition noise, i.e., with probability α, environment does something random instead of
a. Let ε be ε-greedy parameter.

Exercise 8.22. (a) Let ε = 0. Optimal policy if γ = 0.1, α = 0.5?

(b) γ = 0.1, α = 0.5?

(c) γ = 0.1, α = 0?

(d) γ = 1, α = 0.5?

(e) γ = 1, α = 0?

Concept check γ = 1, α = 0. Now our policy explores with ε = 0.5. What path will SARSA learn? What path will
Q-learning learn?

Answer. γ = 1 is undiscounted, and so the optimal policy is to aim for the +10 and cycle. If γ = 0.1,
then the optimal policy is to aim for the +1. The path to reach one of these two depends on α. If α = 0,
then there’s no chance of falling off the cliff so it goes down and around, as it achieves the reward faster. If
α = 0.5, then there is a chance, so it will go up and around.

On the concept check: See Cliffworld example in Sutton & Barto (2012). SARSA is safer and will go
around. Q-learning will not.

