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Hierarchy of topics found in 166K articles from the New York Times

(Ranganath et al. 2015)



Population analysis of 2 billion genetic measurements
(Gopalan et al. 2014)



Analysis of 1.7M taxi trajectories, in Stan

(Kucukelbir et al. 2016)



Challenges in Bayesian Inference

1. Tradeoffs. How do we formalize statistical and computational tradeoffs
for inference?

2. Software. How do we design efficient and flexible software for
generative models?



Background

Given

• Data set x.

• Generative model p(x, z) with latent variables z ∈ Rd .

Goal

• Infer posterior p(z | x).

This is the key problem in Bayesian inference.



Background

Variational inference

• Posit a family of distributions q ∈ Q.

• Typically minimize KL (q ‖ p), which is equivalent to maximizing

Eq(z)[log p(x, z)− log q(z)].

This objective has been the focus of most work in variational inference.



Operator Objectives

There are three ingredients:

1. An operator Op,q that depends on p(z | x) and q(z).

2. A family of test functions f ∈ F , where each f (z) : Rd → Rd .

3. A distance function t(a) : R→ [0,∞).

These three ingredients combine to form an operator objective,

sup
f∈F

t( Eq(z)[(Op,q f )(z)] ).

It is the worst-case expected value among all functions f ∈ F .



Operator Objectives

The goal is to minimize this objective,

inf
q∈Q

sup
f∈F

t( Eq(z)[(Op,q f )(z)] ).

In practice, we parameterize the variational family, {q(z;λ)}. We also
parameterize the test functions {f (z; θ)} with a neural network.

min
λ
max
θ
t( Eλ[(Op,q fθ)(z)] ).



Operator Objectives

sup
f∈F

t( Eq(z)[(Op,q f )(z)] ).

To use these objectives for variational inference, we impose two conditions:

1. Closeness. Its minimum is achieved at the posterior,

Ep(z | x)[(Op,pf )(z)] = 0 for all f ∈ F .

2. Tractability. The operator Op,q—originally in terms of p(z | x) and
q(z)—can be written in terms of p(x, z) and q(z).



Operator Objectives: Examples

KL variational objective. The operator is

(Op,q f )(z) = log q(z)− log p(x, z) ∀f ∈ F .

With distance function t(a) = a, the objective is

Eq(z)[log q(z)− log p(x, z)].



Operator Objectives: Examples

KL variational objective. The operator is

(Op,q f )(z) = log q(z)− log p(x, z) ∀f ∈ F .

With distance function t(a) = a, the objective is

Eq(z)[log q(z)− log p(x, z)].

Langevin-Stein variational objective. The operator is

(Op f )(z) = ∇z log p(x, z)>f (z) +∇>f ,

where∇>f is the divergence of f . With distance function t(a) = a2, the
objective is

sup
f∈F

( Eq(z)[∇z log p(x, z)>f (z) +∇>f ] )2.



Operator Variational Inference

min
λ
max
θ
t( Eλ[(Op,q fθ)(z)] ).

Fix t(a) = a2; the case of t(a) = a easily applies.



Operator Variational Inference

min
λ
max
θ
t( Eλ[(Op,q fθ)(z)] ).

Fix t(a) = a2; the case of t(a) = a easily applies.

Gradient with respect to λ. (Variational approximation)

∇λLθ = 2 Eλ[(Op,q fθ)(Z)]∇λEλ[(Op,q fθ)(Z)].

We use the score function gradient (Ranganath et al., 2014) and
reparameterization gradient (Kingma & Welling, 2014).



Operator Variational Inference

min
λ
max
θ
t( Eλ[(Op,q fθ)(z)] ).

Fix t(a) = a2; the case of t(a) = a easily applies.

Gradient with respect to λ. (Variational approximation)

∇λLθ = 2 Eλ[(Op,q fθ)(Z)]∇λEλ[(Op,q fθ)(Z)].

We use the score function gradient (Ranganath et al., 2014) and
reparameterization gradient (Kingma & Welling, 2014).

Gradient with respect to θ. (Test function)

∇θLλ = 2 Eλ[(Op,qfθ)(z)] Eλ[∇θOp,q fθ(z)].

We construct stochastic gradients with two sets of Monte Carlo
estimates.



Characterizing Objectives: Data Subsampling

Stochastic optimization scales variational inference to massive data (Hoffman
et al., 2013; Salimans & Knowles, 2013). The idea is to subsample data and
scale the log-likelihood,

log p(x1:n, z1:n, β) = log p(β) +
N∑
n=1

[
log p(xn | zn, β) + log p(zn |β)

]
.

≈ log p(β) + M
N

M∑
m=1

[
log p(xm | zm, β) + log p(zm |β)

]
.



Characterizing Objectives: Data Subsampling

Stochastic optimization scales variational inference to massive data Hoffman
et al., 2013; Salimans & Knowles, 2013). The idea is to subsample data and
scale the log-likelihood,

log p(x1:n, z1:n, β) = log p(β) +
N∑
n=1

[
log p(xn | zn, β) + log p(zn |β)

]
.

≈ log p(β) + M
N

M∑
m=1

[
log p(xm | zm, β) + log p(zm |β)

]
.

One class of operators which admit data subsampling are linear operators
with respect to log p(x, z).

The LS and KL operators are examples in this class. (An operator for
f -divergences is not.)



Characterizing Objectives: Variational Programs

Recent advances in variational inference aim to develop expressive
approximations, such as with transformations (Rezende & Mohamed, 2015;
Tran et al., 2015; Kingma et al., 2016) and auxiliary variables (Salimans et al.,
2015; Tran et al., 2016; Ranganath et al., 2016).

In variational inference, our design of the variational family q ∈ Q is limited
by a tractable density.



Characterizing Objectives: Variational Programs

We can design operators that do not depend on q, Op,q = Op, such as the LS
objective

sup
f∈F

( Eq(z)[∇z log p(x, z)>f (z) +∇>f ] )2.

The class of approximating families is much larger, which we call variational
programs.

Consider a generative program of latent variables,

ε ∼ Normal(0, 1), z = G(ε;λ),

where G is a neural network. The program is differentiable and generates
samples for z. Moreover, its density does not have to be tractable.



Experiments

Variational program:

1. Draw ε, ε′ ∼ Normal(0, 1).

2. If ε′ > 0, return G1(ε); else if ε′ ≤ 0, return G2(ε).

1-D Mixture of Gaussians. LS with a Gaussian family fits a mode. LS with a
variational program approaches the truth.



Experiments

We model binarized MNIST, xn ∈ {0, 1}28×28, with

zn ∼ Normal(0, 1),
xn ∼ Bernoulli(logistic(z>n W+ b)),

where zn has latent dimension 10 and with parameters {W, b}.

At test time, we throw away half the pixels and impute them using different
objectives. We compare the log-likelihood of the completed image.

Inference method Completed data log-likelihood

Mean-field Gaussian + KL(q||p) -59.3
Mean-field Gaussian + LS -75.3
Variational Program + LS -58.9

Table: The variational program performs better than KL without directly optimizing for
likelihoods.



How do we design efficient and flexible software for generative
modeling?



Motivation

Hierarchy of topics found in 166K articles from the New York Times

What existing probabilistic programming languages enable this analysis?



Motivation

Hierarchy of topics found in 166K articles from the New York Times

What existing probabilistic programming languages enable this analysis?

Language Inference

Church, Venture, Anglican SMC, MH
Stan ADVI (w/ mini-batches)
WebPPL, PyMC3 BBVI (w/ mini-batches + inference networks)
Infer.NET VMP

Punchline: We need the graph structure.



Edward is a library for probabilistic modeling, inference, and criticism.

• It extends the formalism of computational graphs to generative models
and their inference.

• Only two abstractions are built on top of TensorFlow: random variables
and inference classes.



Model: Random Variables

A random variable x is an object parameterized by tensors θ∗.

It is equipped with methods such as log_prob() and sample().



Model: Random Variables

A random variable wraps a tensor x∗, where x∗ ∼ p(x | θ∗) is a sample.

x
x∗

This enables ops on the computational graph. They operate on x∗.

x
x∗ y

x∗ + y



Model: Directed Graphical Models

p xn

N

p ∼ Beta(1, 1)
xn ∼ Bernoulli(p)

To form a directed edge between random variables, p→ x, we input p into x.
This parameterizes x by p∗, forming p(x | p∗).



Model: Directed Graphical Models
The model defines a computational graph.

p
p∗

x
x∗



Model: Directed Graphical Models
The model defines a computational graph.

p
p∗

x
x∗

Running the graph for x will:

1. Generate a probability p∗ ∼ Beta(1, 1);

2. Generate data x∗ ∼
∏N
n=1 Bernoulli(p

∗).

Directed structure is exposed in the computational graph. We can now write
model-specific algorithms (and generic algorithms).



Example: Variational Auto-encoder for Binarized MNIST

(Kingma & Welling, 2014; Rezende et al., 2014)



Example: Variational Auto-encoder for Binarized MNIST

(Kingma & Welling, 2014; Rezende et al., 2014)



Example: Variational Auto-encoder for Binarized MNIST

(Kingma & Welling, 2014; Rezende et al., 2014)



Inference

Inference

VariationalInference MonteCarlo

KLqp KLpq MAP

Laplace

MetropolisHastings HMC SGLD

An inference algorithm is a class. Algorithms with the same parent class share
parent methods.



Inference

The inputs to all algorithms are
(1) z, binding latent variables to variational factor;
(2) x, binding observed variables to observations.



Inference: Composing Inference

EM algorithm.



Summary

1. Tradeoffs. Developed a language to tradeoff statistical and
computational properties during inference.

2. Software. Developed a generative modeling language on computational
graphs, with model structure exposed to the user.

Developed a language around inference, including both model-specific
and generic algorithms.
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