An Overview of Edward:
A Probabilistic Programming System

Dustin Tran
Columbia University
Exploratory analysis of 1.7M taxi trajectories, in Stan

[Kucukelbir+ 2017]
Simulators of 100K time series in ecology, in Edward

[Tran+ 2017]
Generation & compression of 10M colored 32x32 images, in Edward

[Tran+ 2017; fig from Van der Oord+ 2016]
Cause and effect of 1.6B genetic measurements, in Edward

[in preparation; fig from Gopalan+ 2017]
Spatial analysis of 150,000 shots from 308 NBA players, in Edward

[Dieng+ 2017]
Probabilistic machine learning

• A probabilistic model is a joint distribution of hidden variables \mathbf{z} and observed variables \mathbf{x},

$$p(\mathbf{z}, \mathbf{x}).$$

• Inference about the unknowns is through the \textit{posterior}, the conditional distribution of the hidden variables given the observations

$$p(\mathbf{z} | \mathbf{x}) = \frac{p(\mathbf{z}, \mathbf{x})}{p(\mathbf{x})}.$$

• For most interesting models, the denominator is not tractable. We appeal to \textit{approximate posterior inference}.
Variational inference

- VI solves **inference** with **optimization**.
- Posit a **variational family** of distributions over the latent variables,

\[q(z; \nu) \]

- Fit the **variational parameters** \(\nu \) to be close (in KL) to the exact posterior.
What is probabilistic programming?

Probabilistic programs reify models from mathematics to physical objects.

- Each model is equipped with memory (“bits”, floating point, storage) and computation (“flops”, scalability, communication).

Anything you do lives in the world of probabilistic programming.

- Any computable model.

 ex. graphical models; neural networks; SVMs; stochastic processes.

- Any computable inference algorithm.

 ex. automated inference; model-specific algorithms; inference within inference (learning to learn).

- Any computable application.

 ex. exploratory analysis; object recognition; code generation; causality.
George E.P. Box (1919 - 2013)

An iterative process for science:
1. Build a model of the science
2. Infer the model given data
3. Criticize the model given data

[Box & Hunter 1962, 1965; Box & Hill 1967; Box 1976, 1980]
Edward is a library designed around this loop.

[Box 1976, 1980; Blei 2014]
We have an active community of several thousand users & many contributors.
Model

Edward’s language augments computational graphs with an abstraction for random variables. Each random variable x is associated to a tensor x^*, $x^* \sim p(x | \theta^*)$.

```python
1  # univariate normal
2  Normal(loc=0.0, scale=1.0)
3  # vector of 5 univariate normals
4  Normal(loc=tf.zeros(5), scale=tf.ones(5))
5  # 2 x 3 matrix of Exponentials
6  Exponential(rate=tf.ones([2, 3]))
```

Unlike `tf.Tensors`, `ed.RandomVariables` carry an explicit density with methods such as `log_prob()` and `sample()`.

For implementation, we wrap all TensorFlow Distributions and call `sample` to produce the associated tensor.

[Tran+ 2017]
Example: Beta-Bernoulli

Consider a Beta-Bernoulli model,

\[p(x, \theta) = \text{Beta}(\theta \mid 1, 1) \prod_{n=1}^{50} \text{Bernoulli}(x_n \mid \theta), \]

where \(\theta \) is a probability shared across 50 data points \(x \in \{0, 1\}^{50} \).

1. \(\text{theta} = \text{Beta}(1.0, 1.0) \)
2. \(x = \text{Bernoulli}(\text{probs} = \text{tf.ones}(50) \times \text{theta}) \)

Fetching \(x \) from the graph generates a binary vector of 50 elements.

All computation is represented on the graph, enabling us to leverage model structure during inference.
Example: Variational Auto-Encoder for Binarized MNIST

\[
\begin{align*}
\mathbf{z}_n & \sim \prod_{i=1}^{d} \text{Normal}(0, 1) \\
\mathbf{x}_n & \sim \text{Bernoulli}(p = \text{NN}(z; \theta))
\end{align*}
\]

\[
\begin{align*}
\mathbf{x}_n & \sim \text{Normal}(\mu, \sigma = \text{NN}(x; \phi))
\end{align*}
\]

[Kingma & Welling 2014; Rezende+ 2014]
Example: Variational Auto-Encoder for Binarized MNIST

Probabilistic model
z = Normal(loc=tf.zeros([N, d]), scale=tf.ones([N, d]))
h = Dense(256, activation='relu')(z)
x = Bernoulli(logits=Dense(28 * 28, activation=None)(h))

Variational model
qx = tf.placeholder(tf.float32, [N, 28 * 28])
qh = Dense(256, activation='relu')(qx)
qz = Normal(loc=Dense(d, activation=None)(qh),
 scale=Dense(d, activation='softplus')(qh))

[Kingma & Welling 2014; Rezende+ 2014]
Example: Variational Auto-Encoder for Binarized MNIST
Example: Bayesian neural network for classification

![Diagram of Bayesian neural network](image)

```python
1  W_0 = Normal(mu=tf.zeros([D, H]), sigma=tf.ones([D, H]))
2  W_1 = Normal(mu=tf.zeros([H, 1]), sigma=tf.ones([H, 1]))
3  b_0 = Normal(mu=tf.zeros(H), sigma=tf.ones(L))
4  b_1 = Normal(mu=tf.zeros(1), sigma=tf.ones(1))

5  x = tf.placeholder(tf.float32, [N, D])
6  y = Bernoulli(logits=tf.matmul(tf.nn.tanh(tf.matmul(x, W_0) + b_0), W_1) + b_1)
```

Example: Gaussian process classification

\[
X_i \rightarrow f_i \rightarrow y_i
\]

\[
i = 1 \ldots n
\]

1. \(X = \text{tf}.\text{placeholder}(\text{tf}.\text{float32}, [N, D])\)
2. \(f = \text{MultivariateNormalTriL}(\text{loc=tf}.\text{zeros}(N), \text{scale_tril=tf}.\text{cholesky(rbf(X))))\)
3. \(y = \text{Bernoulli}(\text{logits=f})\)

[Rasmussen & Williams, 2006; fig from Hensman+ 2013]
Inference

Given

- Data x_{train}.
- Model $p(x, z, \beta)$ of observed variables x and latent variables z, β.

Goal

- Calculate posterior distribution

$$p(z, \beta \mid x_{\text{train}}) = \frac{p(x_{\text{train}}, z, \beta)}{\int p(x_{\text{train}}, z, \beta) \, dz \, d\beta}.$$

This is the key problem in Bayesian inference.
All Inference has (at least) two inputs:

1. **red** aligns latent variables and posterior approximations;

2. **blue** aligns observed variables and realizations.

```python
inference = ed.Inference({"beta": qbeta, "z": qz}, data={"x": x_train})
```

Inference has class methods to finely control the algorithm. Edward is fast as handwritten TensorFlow at runtime.

edwardlib.org/api
Inference

Variational inference. It uses a variational model.

```python
1 qbeta = Normal(loc=tf.Variable(tf.zeros([K, D])),
2                   scale=tf.exp(tf.Variable(tf.zeros([K, D]))))
3 qz = Categorical(logits=tf.Variable(tf.zeros([N, K])))
4 inference = ed.VariationalInference({beta: qbeta, z: qz}, data={x: x_train})
```

Monte Carlo. It uses an Empirical approximation.

```python
1 T = 10000  # number of samples
2 qbeta = Empirical(params=tf.Variable(tf.zeros([T, K, D])))
3 qz = Empirical(params=tf.Variable(tf.zeros([T, N])))
4 inference = ed.MonteCarlo({beta: qbeta, z: qz}, data={x: x_train})
```

Conjugacy & exact inference. It uses symbolic algebra on the graph.
Inference: Composing Inference

Core to Edward’s design is that inference can be written as a collection of separate inference programs.

For example, here is variational EM.

```python
qbeta = PointMass(params=tf.Variable(tf.zeros([K, D])))
qz = Categorical(logits=tf.Variable(tf.zeros(N, K)))
inference_e = ed.VariationalInference({z: qz}, data={x: x_data, beta: qbeta})
inference_m = ed.MAP({beta: qbeta}, data={x: x_data, z: qz})

for _ in range(10000):
inference_e.update()
inference_m.update()
```

We can also write message passing algorithms, which work over a collection of local inference problems. This includes expectation propagation.

[Neal & Hinton 1993; Minka 2001; Gelman+ 2017]
Non-Bayesian Methods: GANs

GANs posit a generative process,

\[\epsilon \sim \text{Normal}(0, 1) \]
\[x = G(\epsilon; \theta) \]

for some generative network \(G \).

Training uses a discriminative network \(D \) via the optimization problem

\[
\min_{\theta} \max_{\phi} \mathbb{E}_{p^*(x)}[\log D(x; \phi)] + \mathbb{E}_{p(x; \theta)}[\log(1 - D(x; \phi))]
\]

The generator tries to generate samples indistinguishable from true data.

The discriminator tries to discriminate samples from the generator and samples from the true data.

[Goodfellow+ 2014]
Example: Generative Adversarial Network for MNIST

[Demo]

http://edwardlib.org/tutorials/gan
Non-Bayesian Methods: GANs

```python
def generative_network(eps):
    h = Dense(256, activation='relu')(eps)
    return Dense(28 * 28, activation=None)(h)

def discriminative_network(x):
    h = Dense(28 * 28, activation='relu')(x)
    return Dense(h, activation=None)(1)

# Probabilistic model
eps = Normal(loc=tf.zeros([N, d]), scale=tf.ones([N, d]))
x = generative_network(eps)

inference = ed.GANInference(data={x: x_train},
                             discriminator=discriminative_network)
inference.run()
```

[Goodfellow+ 2014]
Non-Bayesian Methods: GANs

```python
def generative_network(eps):
    h = Dense(256, activation='relu')(eps)
    return Dense(28 * 28, activation=None)(h)

def discriminative_network(x):
    h = Dense(28 * 28, activation='relu')(x)
    return Dense(h, activation=None)(1)

# Probabilistic model
eps = Normal(loc=tf.zeros([N, d]), scale=tf.ones([N, d]))
x = generative_network(eps)

inference = ed.WGANInference(data={x: x_train},
    discriminator=discriminative_network)
inference.run()
```

[Arjovsky+ 2017; Gulrajani+ 2017]
Current Work
Dynamic Graphs

Probabilistic Torch is a library for deep generative models that extends PyTorch. It is similar in spirit and design goals to Edward and Pyro, sharing many design characteristics with the latter.

The design of Probabilistic Torch is intended to be as PyTorch-like as possible. Probabilistic Torch models are written just like you would write any PyTorch model, but make use of three additional constructs:
Distributions Backend

def pixelcnn_dist(params, x_shape=(32, 32, 3)):
 def _logit_func(features):
 # single autoregressive step on observed features
 logits = pixelcnn(features)
 return logits

 logit_template = tf.make_template("pixelcnn", _logit_func)
 make_dist = lambda x: tfd.Independent(tfd.Bernoulli(logit_template(x)))
 return tfd.Autoregressive(make_dist, tf.reduce_prod(x_shape))

x = pixelcnn_dist()
loss = -tf.reduce_sum(x.log_prob(images))
train = tf.train.AdamOptimizer().minimize(loss) # run for training
generate = x.sample() # run for generation

TensorFlow Distributions consists of a large collection of distributions. Bijector enable efficient, composable manipulation of probability distributions.

Pytorch PPLs are consolidating on a backend for distributions.

[Dillon+ 2017]
Distributed, Compiled, Accelerated Systems

Probabilistic programming over multiple machines. XLA compiler optimization and TPUs. More flexible programmable inference.
