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TL;DR

• Implicit models encompass theories about the physical world.
• Implicit models are limited due to lack of latent structure and scalable

inference.
• We develop hierarchical implicit models (HIMs). They combine the idea

of implicit densities with hierarchical Bayesian models.
• We develop likelihood-free variational inference (LFVI). It is a scalable

algorithm for HIMs and enables implicit densities as flexible posterior
approximations.

• We scale simulators in ecology to unprecedented sizes.

Hierarchical Implicit Models

• Hierarchical models play an important role in sharing statistical strength
across examples.

• A broad class of hierarchical Bayesian models can be written as a joint
distribution,

p(x,z,β) = p(β)
N∏

n=1
p(xn |zn,β)p(zn |β). (1)

xn is an observation, zn are latent variables associated to that observation
(local), β are latent variables shared across observations (global).

• HIM combine this idea with implicit densities: define a function g that takes
in random noise εn ∼ s(·) and outputs xn,

xn = g(εn |zn,β), εn ∼ s(·).
• The induced likelihood is

Pr(xn ∈ A |zn,β) =
∫
{g(εn |zn,β)=xn∈A}

s(εn)dεn.

This integral is typically intractable.
• Example: Physical Simulators. For prey and predator populations

x1, x2 ∈ R+ respectively, one process is
dx1

dt
= β1x1− β2x1x2+ ε1, ε1 ∼ Normal(0,10),

dx2

dt
= −β2x2+ β3x1x2+ ε2, ε2 ∼ Normal(0,10),

Lognormal priors are placed over β .
• Example: Bayesian Generative Adversarial Network. The implicit model

for a generative adversarial network (GAN) is

xn = g(εn;θ ), εn ∼ s(·), (2)

We make GANs amenable to Bayesian analysis by placing a prior on the
parameters θ .

Likelihood-Free Variational Inference

Variational inference posits an approximating family q ∈Q and optimizes to find
the member closest to p(z,β |x).
There are many choices of objective functions. To choose one, we lay out desiderata:

1 Scalability. The objective should admit unbiased subsampling,
N∑

n=1
f(xn)≈

N
M

M∑
m=1

f(xm),

2 Implicit Local Approximations. Implicit models specify flexible densities and
induce complex posterior distributions. The objective should only require
that one can sample zn ∼ q(zn |xn,β) and not evaluate its density.

KL Variational Objective

Classical VI maximizes the ELBO,

L = Eq(β ,z |x)[log p(x,z,β)− log q(β ,z |x)].
Substitute in factorizations,

L = Eq(β)[log p(β)− log q(β)] +
N∑

n=1
Eq(β)q(zn |xn,β)[log p(xn,zn |β)− log q(zn |xn,β)].

This objective presents difficulties: the local densities p(xn,zn |β) and q(zn |xn,β)
are both intractable.

Trick: Density Ratio Estimation

Let q(xn) be the empirical distribution on x. Subtract log q(xn) from the ELBO,

L ∝ Eq(β)[log p(β)− log q(β)] +
N∑

n=1
Eq(β)q(zn |xn,β)

[
log

p(xn,zn |β)
q(xn,zn |β)

]
.

Train r(·;θ ) by minimizing a loss function,

D = Ep(xn,zn |β)[− logσ(r(xn,zn,β ;θ ))] +Eq(xn,zn |β)[− log(1−σ(r(xn,zn,β ;θ )))].

If r(·;θ ) is sufficiently expressive, minimizing the loss returns the optimal function,

r∗(xn,zn,β) = log p(xn,zn |β)− log q(xn,zn |β).

As we minimize X, we use r(·;θ ) as a proxy to the log ratio in X. Note r estimates
the log ratio; it’s of direct interest and more numerically stable than the ratio.

New KL Variational Objective

Optimizing the ELBO involves subsituting in the ratio estimator,

L = Eq(β |x)[log p(β)− log q(β)] +
N∑

n=1
Eq(β |x)q(zn |xn,β)[r(xn,zn,β)].

All terms are tractable. We can calculate gradients to optimize the variational
family q using reparameterization gradients.
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LFVI achieves more accurate results and scales to unprecedented sizes.

Bayesian GAN

Test Set Error
Model + Inference Crabs Pima Covertype MNIST
Bayesian GAN + VI 0.03 0.232 0.154 0.0136
Bayesian GAN + MAP 0.12 0.240 0.185 0.0283
Bayesian NN + VI 0.02 0.242 0.164 0.0311
Bayesian NN + MAP 0.05 0.320 0.188 0.0623

Classification accuracy across small/medium-size data. Bayesian GANs achieve
comparable or better performance to their Bayesian neural net counterpart.

Recipe: Injecting Noise into Hidden Units

How do you build an implicit model? Inject noise!
For sequences x= (x1, . . . ,xT), write an RNN,

zt = gz(xt−1,zt−1,εt,z), εt,z ∼N (0, 1),
xt = gx(zt,εt,x), εt,x ∼N (0, 1),

The g functions are dense layers with ReLUs and layer norm. Standard normal
priors are placed over all weights and biases.

[1] Saatchi, Y. and Wilson, A. G. (2017). Bayesian GAN. In Neural Information Processing Systems.
[2] Tran, D. and Blei, D. M. (2017). Implicit causal models for genome-wide association studies.

arXiv preprint arXiv:1710.10742.


