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Abstract
Method of moment estimators exhibit appeal-
ing statistical properties, such as asymptotic un-
biasedness, for nonconvex problems. However,
they typically require a large number of sam-
ples and are extremely sensitive to model mis-
specification. In this paper, we apply the frame-
work of M-estimation to develop both a general-
ized method of moments procedure and a princi-
pled method for regularization. Our proposed M-
estimator obtains optimal sample efficiency rates
(in the class of moment-based estimators) and
the same well-known rates on prediction accu-
racy as other spectral estimators. It also makes it
straightforward to incorporate regularization into
the sample moment conditions. We demonstrate
empirically the gains in sample efficiency from
our approach on hidden Markov models.

1 Introduction

Developing expressive latent variable models is a funda-
mental task in statistics and machine learning. However,
performing parameter estimation with statistical guarantees
remains challenging; in practice, optimization techniques
such as the EMalgorithm (Dempster et al., 1977) are used to
find local solutions to approximate the maximum likelihood
estimate (mle) or maximum a posteriori solution.

Recently, inference techniques based on the method of mo-
ments (Pearson, 1894), coined as spectral learning, have
gained interest because they provide consistent estima-
tors for many classes of models, such as hidden Markov
models (Hsu et al., 2012), predictive state representations
(Boots et al., 2010), latent tree models (Parikh et al., 2011),
weighted automata (Balle and Mohri, 2012), mixture mod-
els (Anandkumar et al., 2014b), and mixed membership
stochastic blockmodels (Anandkumar et al., 2014a). Spec-
tral methods operate by deriving low-order moment con-
ditions on the model—such as the mean and covariance—
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and matching these to moments of the observed data. Of-
ten this moment-matching process can be solved efficiently
with linear algebra routines and can allow for parameter re-
covery in settings where row-level data is unwieldy to work
with (e.g. streaming data) or unavailable (e.g. an institution
may only be willing to release summary statistics).

However, current spectral methods are extremely sensitive
to poorly-estimated moments and model misspecification.
The former problem can be addressed, in part, by robust
estimation methods of covariances (Negahban and Wain-
wright, 2011)—though robust estimation for higher order
moments remains an open challenge. When the rank of the
model is set too low—a form of model misspecification—
Kulesza et al. (2014) demonstrate that naive methods can
lead to arbitrarily large prediction error. In practice, there
are many occasions where we may wish to learn a low-rank
approximation to a complex system.

In contrast, parameters learned from maximum likelihood
and other optimization-based estimators are robust (assum-
ing global optimum), as theyminimize theKullback-Leibler
divergence from the considered model class to the true data
distribution (White, 1982) and can in certain cases achieve
consistency (Gourieroux et al., 1984). With finite samples,
optimization-based estimators can achieve reasonable vari-
ances (Godambe, 1960).

Is such robustness possible for spectral methods? Errors
due to both poor moment estimates and model misspec-
ification can be viewed as forms of overfitting. Various
heuristics such as early stopping are considered in the liter-
ature (Mahoney and Orecchia, 2011), but they fundamen-
tally break assumptions for the statistical guarantees, and
are difficult to rigorously characterize; this leads to a dis-
parity between theory and practice.

In this paper, we analyze spectral methods from their
traditional–and more general—setting as an M-estimator.
M-estimation has deep roots in robust statistics (see, e.g.,
Huber and Ronchetti (2009)). This connection emphasizes
the relationship of spectral methods to well-established
alternatives such as maximum likelihood. We use this
connection to recover the desired properties—sample effi-
ciency and balanced fitting. Specifically, our work makes
the following contributions:
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Provably optimal sample efficiency with respect to the
moments. With the choice of weighted Frobenius norm as
a metric on the moment conditions, the M-estimation pro-
cedure corresponds to the generalized method of moments
(gmm), whose estimator is proven to be statistically efficient
with respect to the information stored in the moments. Most
practically, the gmm is sample efficient and is thus more
adaptive to scenarios where the size of the data set is small
to moderate or the data collection process results in imbal-
anced samples for estimation.

Principled regularization for sparse estimation. The set-
ting of M-estimation is naturally conducive to penalization
in order to regularize parameters, and it is commonly ap-
plied to perform robust estimation and variable selection
(Owen, 2007; Lambert-Lacroix et al., 2011; Li et al., 2011).
From the Bayesian perspective, this can be interpreted as
placing priors on the parameters of interest, and where the
log-likelihood is replaced by a more general, robust, func-
tion of the data and parameters. The proposed M-estimator
automatically preserves the same bounds on the predictive
accuracy as other spectral algorithms, while also achieving
statistical efficiency.

We focus on the application of spectral M-estimation to hid-
den Markov models in our development of the theory (sec-
tion 3) and empirical evaluation (section 5); we discuss ex-
tensions to other latent variablemodels in section 6.

2 Background

2.1 M-estimation

We first review M-estimation (Huber, 1973; Van der Vaart,
2000), which naturally generalizes the moment matching
used in spectral methods. Let observations X1, . . . ,XN ∈
X be generated from a distribution with unknown parame-
ters θ∗ ∈ Θ. Consider minimizing the criterion

MN (θ) =

N∑
n=1

m(Xn,θ),

where m(·, ·) : X × Θ → R are called the estimat-
ing functions (Godambe, 1976, 1991). The argument θ̂

m

which minimizes the criterion is termed the M-estimator.
Similarly, one may also consider penalized M-estimation in
which one minimizes the criterion

MN (θ) =

N∑
n=1

m(Xn,θ) + λP (θ), (1)

wherem(·, ·) is as before, λ ∈ R is fixed, andP (·) : Θ→ R
is a specified penalty function on the parameters.

Let M(θ) = E[m(X,θ)]. The M-estimator θ̂
m
is consis-

tent in that 1
NMN (θ) uniformly converges in probability to

M(θ) as N → ∞, and θ̂
m
converges to θ∗ (or the closest

projection, if θ∗ is not among the considered models). In
the case of penalization, the intuition is that in the limit, the
penalty term P (θ∗) is dominated by the confidence one has
from the data (as the first summation growswithN ).

2.2 Generalized method of moments

A particular case of M-estimation is the generalized method
of moments (gmm), developed in the econometrics litera-
ture (Burguete et al., 1982; Hansen, 1982). Given a vector-
valued functionm(·, ·) : X ×Θ→ Rk, the moment condi-
tions form

M(θ∗) = E[m(X,θ∗)] = 0,

where the expectation is takenwith respect to the data distri-
bution onX. In practice, we use empirical estimates of the
kmoment conditions using data,

∑N
n=1m(Xn,θ).1

In the setting where k > |Θ|, the problem is overspecified
and no root solution exists. Onemay best hope to find the set
of parameters θ∗ which minimizes ‖E[m(X,θ)]‖ for some
choice of norm ‖ · ‖. The gmm estimator θ̂

gmm
is given by

minimizing a weighted criterion function,

MN (θ) =
∥∥∥ N∑
n=1

m(Xn,θ)
∥∥∥2
W
, (2)

where for a positive definite matrix W ∈ Rk×k, the
weighted norm is ‖v‖2W = v>Wv for v ∈ Rk.

Under standard assumptions, the estimator θ̂
gmm

is con-
sistent and asymptotically normal. Moreover, if we set
W ∝ E[m(Xn,θ

∗)m(Xn,θ
∗)>]−1, then θ̂

gmm
is statis-

tically efficient in the class of consistent and asymptotically
normal estimators conditional on the moment conditions.
Therefore, if the moment conditions form a sufficient statis-
tic of the data (as in the mle), then the gmm estimator is
optimal in that its variance asymptotically achieves the op-
timal Cramér-Rao lower bound. More generally, the gmm
estimator achieves the Godambe information.

One can reformulate many, if not all, examples of spectral
learning algorithms as special cases of M-estimation, and
thus one can recover the set of parameters with maximal
sample efficiency using thegmm estimator (Equation 2) and
achieve certain robustness properties and regularization by
sufficient penalization of the loss (Equation 1).

2.3 Hidden Markov models

For the remainder of this paper, we will focus on spectral
estimation and associated statistical guarantees for hidden

1To simplify presentation,m(·, ·) is written as vector-valued to
connect to moment estimation. Some simple swapping of symbols
can recover the scalar-valued notation in M-estimation.
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Markov models (hmms)—applications to other latent vari-
able models are discussed in Section 6. An hmm is defined
by a 5-tuple {X,H,T,O,π} where X is a set of n dis-
crete observations, H is a set of m discrete hidden states,
π ∈ Rm is the initial distribution over hidden states, and
the transition T ∈ Rm×m and observation O ∈ Rn×m op-
erators govern the dynamics of the system:

Tij = Pr(ht+1 = i | ht = j),

Oij = Pr(xt = i | ht = j).

Specifically, hmms assume that given the hidden state ht at
time t, the next state ht+1 and the current observation xt is
independent of any history before ht.

We are interested in estimating the joint probabilities
Pr(x1:t) = Pr(x1, . . . , xt) and the conditional probabili-
ties Pr(xt | x1:t−1). The model parameters (T,O,π) can
also be recovered in our setup, but directly estimating the
parameters can be unstable and requires additional assump-
tions such as coherence (Anandkumar et al., 2014a; Mossel
and Roch, 2005).

If T and O are full rank, and π > 0 for all hidden states
h ∈ [m], then Hsu et al. (2012) show that the follow-
ing statistics are sufficient to consistently estimate the joint
probabilities:

P1 ∈ Rn [P1]i = Pr(x1 = i),

P2,1 ∈ Rn×n [P2,1]ij = Pr(x2 = i, x1 = j), (3)

P3,x,1 ∈ Rn×n [P3,x,1]ij = Pr(x3 = i, x2 = x, x1 = j),

where P3,x,1 is written for all x ∈ [n]. We term these
statistics observable, as they can be estimated directly using
triplets of the observations.

Specifically, Hsu et al. (2012) define the spectral model pa-
rameters (bspec

1 ,bspec
∞ ,Bspec

x ) as follows. Let U ∈ Rn×m
be a matrix such thatU>O is invertible—typically, it is the
left singular vectors corresponding to them largest singular
values of P2,1—and set

bspec
1 = U>P1,

bspec
∞ = (P>2,1U)†P1,

Bspec
x = U>P3,x,1(U>P2,1)† ∀x ∈ [n].

(4)

where A† denotes the pseudoinverse of A. Then the joint
probability satisfies

Pr(x1:t) = bT∞Bxt · · ·Bx1b1. (5)

Intuitively, one can think of b1 as the initial state vector in a
projected observable representation space; the matrixBx is
an observable transition operator which propagates changes
in this space; the vector b∞ simply acts as a normalizer.
From Equation 5, Hsu et al. (2012) demonstrated that the
estimator θ̂

spec
= (b̂

spec
1 , b̂

spec
∞ , B̂

spec
x ), which is constructed

from the empirical statistics P̂1, P̂2,1, P̂3,x,1, is asymptot-
ically unbiased as the empirical statistics become exact in
the limit. Moreover, the number of observations required
to achieve a fixed level of accuracy is only polynomial in
the length of the sequence, t.

3 Spectral M-estimation

Following the results of spectral methods (Hsu et al., 2012;
Boots et al., 2010; Balle and Mohri, 2012; Cohen et al.,
2012; Arora et al., 2012), it is natural to consider the under-
lying framework for its methodology, and how it connects
to techniques for maximum likelihood estimation. To ad-
dress this, we start by deriving the usual spectral estimator
(4) from the M-estimation setting.

3.1 Spectral M-estimator

Denote the parameter triplet θ = (b1,B,b∞) and define
the moment conditions

m1(θ) = b1 −P1,

m∞(θ) = P>2,1b∞ −P1,

mx(θ) = P3,x,1 −BxP2,1 ∀x ∈ [n].

(6)

Let θ∗ denote the root solution m1(θ∗) = m∞(θ∗) =
mx(θ∗) = 0. The vector b1 is trivially given by P1, and
the solution of b∞ to m∞(·) is simply the vector of ones,
1n. Thus it suffices to estimate the tensor B.

The standard approach in spectral methods (e.g., Hsu et al.
(2012); Boots et al. (2010)) is to first observe that param-
eter triplets satisfying the joint probability in Equation 5
are equivalent up to a similarity transform: given the triplet
(b1, {Bx},b∞) and an invertible matrix S ∈ Rn×n, the
transformed triplet (b′1 = Sb1, {B′x = SBxS

−1},b′∞ =
S−Tb∞) provide the same quantities. Thus, what we are
really interested in is not a unique set of parameters but an
equivalence class—governed by the joint probability (5)—
and which denote identical parameters up to a similarity
transform. The moment conditions (6) are constructed such
that the solution θ∗ defines a unique element in this equiva-
lence class (and thus by M-estimation theory, the estimator
is identifiable (Van der Vaart, 2000)).

We now formalize the connection to the usual spectral esti-
mator as follows. LetX = {Xn = (xn1, xn2, xn3)} denote
the data set ofN triplets by which the observable represen-
tations P1, P2,1 and P3,x,1 are estimated. Define

MN (B) =
∑

x,i,j∈[n]3
([P̂3,x,1]ij − [Bx]i·[P̂2,1]·j)

2. (7)

Proposition 1 (Equivalence). Let θ̂
spec

denote the estimator
using empirical statistics in Equation 4. Let θ̂

m
denote the
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M-estimator given by

b̂
M
1 = P̂1,

b̂
M
∞ = 1n,

B̂
M

= arg min
B∈Rn×n×n

MN (B).

Then θ̂
m
is in the same equivalence class as θ̂

spec
, so they

provide the same probability estimates.

Proposition 1 allows us to leverage both M-estimation the-
ory and the usual finite sample bounds on accuracy given by
Hsu et al. (2012). Specifically, the sample complexity of θ̂

m

depends polynomially on the singular values 1/σm(P2,1)
and 1/σm(O), where σm(·) denotes themth largest singu-
lar value of its matrix argument.

3.2 Regularized Spectral M-estimator: Low Rank
Setting

Suppose there is a low rank constraint on the parameters,
where rank(Bx) ≤ k for some k < m and for all matri-
ces Bx. We may impose this constraint for computational
tractability, to avoid the O(n3) complexity of solving sin-
gular value decomposition associated with the dynamical
system. It may also occur naturally: the maximal rank of
Bx is rank(O) = rank(T) ≤ m, and often the transition
operators are low rank. Estimation with this constraint is
known as low rank spectral learning, Kulesza et al. (2014)
show that simply truncating Bx to a desired rank can lead
to poor prediction. Following the M-estimation setting, we
now derive a more robust estimator.

To optimize over an unconstrained Euclidean space, we first
cast the low rank estimation problem in terms of matrix fac-
torization. Let Bx = RxS

>
x , where Rx,Sx ∈ Rn×k, and

letR and S be tensors formed by the collections of matrices
{Rx} and {Sx} respectively.

This leads to the criterion function

MN (B) =
∑

x,i,j∈[n]3
([P̂3,x,1]ij− [Rx]i·S

>
x [P̂2,1]·j)

2, (8)

where we use the notation Ai· (and respectively, A·j) to
represent the ith row (and jth column) of a matrix.

3.3 Regularized Spectral M-estimator: Additional
Penalization

Given the M-estimation following Equation 8, we can gen-
eralize the procedure further by augmenting the criterion
function with a penalty term,

MN (R,S) + λPα(R,S),

where Pα(R,S) is a specified penalty function with regu-
larization parameter λ. However, in general, ifMN (R,S)

converges in probability to M(R,S) as in the current set-
ting, we must specify a suitable decaying schedule on the
penalty function,

MN (R,S) + λN−pPα(R,S)

for fixed p > 0 (unlike traditional penalized M-estimation,
the number of summations remains fixed asN →∞). Ide-
ally, the penalty function should decay at the slowest possi-
ble rate, without affecting the convergence rate of the pre-
vious M-estimator (8). We choose p as follows.
Proposition 2. Let θ̂

m
denote the M-estimator obtained by

minimizing the criterion function

MN (R,S) + λN−pPα(R,S),

where p > 0. Then the largest value of p such that the
convergence rate of θ̂

m
does not change is p = 1/2.

Trivially this is the case based on the asymptotic rate of
the estimator. In practice, we consider losses of the form

L(R,S) = MN (R,S) + λN−1/2‖R‖1. (9)

Penalizing only the first factor of B acts as a proxy for pe-
nalizing the observation operator O; that is, by construc-
tion one can show that Bx = OAxO

†, where Ax =
Tdiag(Ox,1, . . . ,Ox,m). We will denote this final crite-
rion function as L and its M-estimator as θ̂

m
, which also

collects the two parameters b̂
m
1 = P̂1 and b̂

m
∞ = 1.

3.4 Sample Efficiency through Generalized Method
of Moments

With the low rank and penalization extensions in place, we
extend the estimation procedure once more: we define the
criterion functionMN (R,S) of Equation 9 in order to ob-
tain optimal sample efficiency.

Let m be a vector of length n3, which flattens the moment
conditionsmx(θ) overx ∈ [n] and eachmatrix element i, j.
More specifically, an index (x, i, j) ∈ [n]3 intom is

mxij = [P̂3,x,1]ij − [Rx]i·S
>
x [P̂2,1]·j .

As before, there are n3 moment conditions but now 2n2k
parameters due to the low rank structure—corresponding
to each element in the n × n × k tensors R,S. The gmm
estimator is the minimizer of the criterion function

MN (R,S) =
∑

i,j∈[[n]3]2
Wijmimj , (10)

where W is a weighting matrix that trades off between er-
rors in the various gmm moment condtions. If W is the
identity I, then each term is mimj for all i, j ∈ [n]3; this
recovers the original spectral M-estimation criterion func-
tion considered in Equation 8.
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To achieve maximum sample efficiency, gmm theory
(Hansen, 1982) states that the optimal weightingW is pro-
portional to the precision matrix,

W ∝ E[m(Xn, {R∗,S∗})m(Xn, {R∗,S∗})>]−1. (11)

The optimal W minimizes the variance of the estimator
by calibrating it to the inexactness of the estimated statis-
tics, P̂1, P̂2,1, P̂3,x,1. If the moment conditions form the
gradient of the log-likelihood function, m(X, {R,S}) =
∇`({R,S};X), the optimal weighting matrixW becomes
the inverse Fisher information evaluated at the true param-
eters. This recovers a maximum likelihood estimator with
minimal asymptotic variance. Analogous to the mle set-
ting, the choice of the moment conditionsm and weighting
matrixWmay also be interpreted as minimizing a distance
to the true data generating distribution, where the distance
between probability distributions is defined by symmetrized
KL divergence (Amari and Kawanabe, 1997b,a).

To gain intuition, note that a first-order diagonal approxima-
tion to Equation 11 is given by the inverse diagonal entries
of the expected outer product. These entries Wii weight
according to the magnitude of error in the sample moments
mi. Large magnitudes for mi lead 1/m2

i to be small; this
forces the M-estimator to place less weight on high error
moments. With cross-correlation, W places more weight
on other estimates paired with high error moments. For ex-
ample, a small error moment mj leads to a larger weight
1/(mimj)

2. These weights enable more intelligent param-
eter estimation.

4 Algorithm

The criterion function L of Equation 9 is a quadratic form
plus a convex penalty. Moreover, it is strongly convex for
R given S and S given R. Hence we proceed with estima-
tion by the procedure of alternating minimization, i.e., ap-
ply convex solvers which alternate between estimating each
set of parameters.

More specifically, we apply an iterative procedure where we
1. alternate minimizing the loss over R and S conditioned
on an estimate of W; 2. set W conditioned on estimates
of R,S; 3. repeat the procedure until convergence. An
overview of the procedure is described in Algorithm 1, and
we derive gradients in the following proposition.
Proposition 3. The gradients are

∇RL = J>RWm(X, {R,S}) +∇RPα(R,S) (12)

∇SL = J>S Wm(X, {R,S}) +∇RPα(R,S) (13)

where the matrices JR ∈ Rn3×n2k and JS ∈ Rn3×n2k are
given by

[JR]xij,uvw =

{
−[S>x ]w·[P2,1]·j , if x = u, i = v

0, otherwise
(14)

Algorithm 1: Spectral M-estimation for hmms

Input: N observation triplets X = {Xn : (x1, x2, x3)}.
Construct empirical statistics P̂1, P̂2,1, P̂3,x,1 ∀x ∈ [n].
Initialize Ŵ = I .
Set iteration counter s = 1.

while not converged do
if s ≥ 2 then

Ŵ =(∑N
n=1m(Xn, {R̂, Ŝ})m(Xn, {R̂, Ŝ})>

)−1
end

R̂, Ŝ = arg minR,S L(R,S) (Algorithm 2).

Increment s.
end
b̂

m
1 = P̂1.

B̂
m

= {R̂xŜ
>
x }.

b̂
m
∞ = 1n.

Return θ̂
m

= (b̂
m
1 , B̂

m
, b̂

m
∞).

Algorithm 2: Alternating minimization, given weights W

Input: initial values R̂, Ŝ.
while not converged do

R̂ = arg minR L(R,S) (Equation 18)

Ŝ = arg minS L(R,S) (Equation 19)
end
Return R̂, Ŝ.

and

[JS]xij,uvw =

{
−[Rx]iw[P2,1]vj , if x = u

0, otherwise
(15)

Note that we initialize Ŵ = I, so that one loop of
Algorithm 1 corresponds to the original spectral estima-
tor of Equation 7. The global optima upon future itera-
tions are refined based on the weighting matrix, and are
in fact guaranteed to perform at least as well as the min-
imizer of the original optima. Note also that only one it-
eration of the loop is necessary for optimal sample effi-
ciency asymptotically, as Ŵ converges in probability to
E[m(Xn, {R,S})m(Xn, {R,S})>]−1. However, for fi-
nite data we see in experiments that better performance oc-
curs when running the algorithm until convergence.

The matrix factorization view considered here, as well as
the introduction of the weighting matrix W, makes the
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problem highly nonconvex. However, much recent theory
has gone into explaining why simple optimization proce-
dures following alternating minimization typically perform
well in practice (Jain et al., 2013; Loh and Wainwright,
2014; Hardt, 2014; Chen and Wainwright, 2015; Bhojana-
palli et al., 2015; Garber and Hazan, 2015; Loh, 2015). We
also find that in practice the richer information gain from
the generalized M-estimation procedure leads to improved
estimates. It is an open problem to understand these im-
provements theoretically. Note that initialization using the
original spectral estimator guarantees a global solution to
the first iteration without penalization; we can apply it to
initialize future iterations of the weighting as well as for
nonconvex optimization with a penalty.

For computational efficiency, one can take immediate ad-
vantage of the block diagonal structure of the weightingma-
trix: this comes as a result of the independent sets of param-
eters in the loss function of Equation 9. That is, the param-
eter matrices Bx′ only appear in themxij ∈ [n]3 moments
when x = x′. Thus it can be embarassingly parallelized
into n separate optimizations. We apply individual opti-
mizations on n procedures, each of which have n2 moment
conditions and recover a particularBx. The computational
complexity of the algorithm is O(n2) per iteration, with a
storage complexity of O(n4).

5 Experiments
We demonstrate the sample efficiency gained by the weight-
ing scheme in the M-estimator and the advantage of sparse
estimation due to L1 penalization. We use toy configura-
tions to highlight the M-estimator’s robustness to model or
rank mismatch, imbalanced observations, low sample size,
and overfitting; finally we show results on real data.

For the M-estimator, we initialize using the original spec-
tral estimate and also try several random initializations; we
then take the estimates with minimal training loss. As the
weighting matrix can become numerically singular, we add
10−8 to the diagonal. Comparisons are always done on test
set evaluations. Note also that evaluations of the loss cannot
be compared among algorithms, as the estimators minimize
inherently different functions.

Length B̂
spec
0 B̂

m
0

10 1 1
15 0.8889 0.8607
25 0.0198 3.1521 · 10−6
50 0.0008 9.9664 · 10−9

Figure 1: Left: Decay of the transition operator B0 as
the length of sequence increases (lower is better); Right:
Weighting matrix of B0 for each length is displayed from
top left-right, bottom left-right.

h1

h2

h3

h5

h4

0.50.9

0.11

1

0.50.9

0.1

(a) ring

h1 h2 h3

h4 h5 h6

h7 h8 h9

(b) grid

h1 h2 h3 h4 h5
1− p 1− p 1− p 1− p

p
p

p
p

1

(c) chain

Figure 2: hmm configurations. (a) ring: The outer loop
indicate clockwise transition probabilities, the inner loop
indicate counter-clockwise. (b) grid: Each state has equal
probability of visiting any neighbor. (c) chain: States tran-
sition with a probability p of resetting to the first state.

5.1 Deterministic sequence

Consider a rank-11 system of two binary states: 0 and 1.
The observation sequence deterministically follows the pat-
tern "00000000001. . . 1", where 0 is always observed for the
first 10 steps and 1 is observed for all remaining steps. Sup-
pose that we aim to estimate this with a model of rank 1.
Figure 1 displays the original estimator θ̂

spec
and the M-

estimator θ̂
m
. As the length of the sequence increases, we

expect B0, the observable transition operator for the first
state, to decay to 0. Our M-estimator achieves this at a
much faster rate than θ̂

spec
. It places more weight on the

first state, and this weight increases with the length of the
sequence.

5.2 Ring configuration

Model rank θ̂
spec

θ̂
m

(θ̂
m
, λ = 0.01)

4 1.50 1.25 1.03
3 1.15 1.03 0.81
2 0.68 0.65 0.60

Table 1: Relative norm difference between estimated and
true joint probability, averaged over 100 test examples.

In Section 2a, the hidden states form a ring: h1 has uni-
form probability of proceeding clockwise to h2 or counter-
clockwise to h5; h2 and h5 return back to h1 with probabil-
ity 0.9 and visit h3 or h4 (respectively) with probability 0.1.
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This leads to imbalanced samples where h1, h2, h5 are vis-
itedmost, and one rarely sees h3 and h4. States are correctly
observed with 0.6 probability, otherwise we observe any
other state uniformly. We train on 100 examples.

Table 1 shows that under difficult settings—with imbal-
anced states, not enough training examples, and ill-posed
rank problems—spectral estimators fit poorly due to the in-
formation loss from higher order moments. However, the
weighting scheme of θ̂

m
allows the estimator to compensate

for some of these problems, and thus it performs better than
θ̂
spec

. Moreover, when used with a L1 penalty of λ = 0.01,
the estimator dominates other algorithms; the value of λ
was also chosen generally and not optimized over.

5.3 Grid configuration

Grid size θ̂
spec

θ̂
m

(θ̂
m
, λ = 1e-3)

2× 2 0.014 0.014 0.014
3× 3 0.225 0.225 0.212
5× 5 0.475 0.475 0.458

Table 2: Relative norm difference between estimated and
true joint probability, averaged over 100 test examples.

In the grid configuration (Section 2b), each hidden state has
an equal probability of transitioning to any one of its neigh-
bors; the observation matrix O indicates the correct state
with 0.9 probability, and any other state otherwise. We use
100,000 training examples and vary the grid size.

Table 2 demonstrates good performance for small grids
where the training data is large enough to accurately cover
the state space. Note also that the unregularized M-
estimator performs the same as the original estimator over
all grid sizes. This is because the weighting matrix has no
effect due to the the equally likely transitions, which are
already well-balanced. However, the role of regularization
becomes more important as the grid grows larger; this is be-
cause the fixed sample size leads observed states to be more
spread out and revisited less often.

5.4 Chain configuration

Reset probability θ̂
spec

θ̂
m

(θ̂
m
, λ = 1e-3)

0.1 0.80 0.73 0.72
0.3 0.82 0.80 0.77
0.5 1.24 0.96 0.69

Table 3: Relative norm difference between estimated and
true joint probability, averaged over 100 test examples.

The chain configuration (Section 2c) mimicks the chain
problem in reinforcement learning (Strens, 2000; Poupart
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Figure 3: Predictive accuracy of original estimator (green)
and M-estimator (blue) over # of training examples, with
standard error bars taken over 100 simulations. Top: m = 5
hidden states with n = 10 hidden states. Bottom: m = 10
hidden states with n = 20 observed states.

et al., 2006). Each hidden state transitions to the next with
probability 1−p and resets to the first state with probability
p. We use 50 training examples for each p.

As the reset probability increases, the data distribution be-
comes more heavy tailed. This is reflected in Table 3, as the
weighting makes a larger impact over highly skewed distri-
butions. As very few examples are seen with the last few
states, the L1 penalty has a growing impact as well.

5.5 Synthetic hidden Markov models

We generate two large synthetic data sets following well-
behaving hmms: one system usesm = 5 hidden states and
n = 10 observed states, and the other usesm = 10 hidden
states and n = 20 observed states. We perform both full
rank and low rank estimation over 10, 000 training examples
and analyze held-out prediction error.

In Figure 3, we see that with few training examples, the M-
estimator’s optimal weighting scheme is crucial for reason-
able performance. Moreover, as explained in theory, the
variance of the M-estimator is much lower than the origi-
nal spectral estimator. The original estimator and the M-
estimator converge at the same rate and eventually reach
competitive errors. However, the M-estimator achieves this
much faster in practice even in these well-behaving dynam-
ical systems.
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Data set Type Training set # Obs. states θ̂
spec

θ̂
m

(θ̂
m
, λ = 1e-5) θ̂

em

Alice Text 50,000 26 0.22 0.20 0.20 0.14
Splice DNA 100,000 4 0.41 0.40 0.35 0.19
Bach Chorales Music 4,693 20 0.31 0.28 0.25 0.24
Ecoli Protein 1,407 20 0.14 0.13 0.15 0.12
Dodgers Traffic 30,000 10 0.42 0.38 0.39 0.33

Table 4: Predictive test error for three spectral estimators—Hsu et al. (2012), M-estimator, and regularized M-estimator—
and EM. In many cases the M-estimators approach the performance of EM.

5.6 Real data sets

We now examine the performance of the estimators for 5
separate data sets: in the Alice novel available in Project
Gutenberg, the task is to predict characters after having
trained over the first 50,000 of them; the Splice data set
consists of 3,190 examples of DNA sequences which have
length 60 and the task is to predict the remaining A,C,T,
or G fields; the Bach Chorales consists of discrete event
sequences in which the task is to predict the correct pitch
of melody lines; Ecoli describes sequencing information
of protein localization sites; Dodgers examines link counts
over a freeway in Los Angeles. These last four data sets are
available from Lichman (2013).

Table 4 indicates the average prediction error on held out
data. The results are consistent with that of the toy con-
figurations and synthetic benchmarks. In all data sets, the
M-estimator surpasses the original estimator. The benefit of
sparse regularization tended to vary, as we did not choose
to tune this hyperparameter per data set. We also com-
pared to EM with random initializations as a benchmark to
likelihood-based methods. Many local optima performed
poorly; the best solutions found after enough random ini-
tializations uniformly performed better than the spectral es-
timators over all data sets.

6 Discussion and Related Work

In this work, we focused on the application of M-estimation
to estimating parameters of hmms. Our analysis and algo-
rithms carry over almost identically for predictive state rep-
resentations (e.g. in Siddiqi et al. (2010); Song et al. (2010);
Boots et al. (2010)). Estimating parameters for other latent
variable models can also be easily formulated as general-
ized method of moments problems. For example, follow-
ing Anandkumar et al. (2012), a mixture model specified
by Pr(h = j) = ωj and Pr(x = i | h = j) = Mij for
i ∈ [n], j ∈ [k], has moment conditions

m1(M, ω) = P2,1 −Mdiag(ω)M>,

mx(M, ω) = P3,x,1 −Mdiag(M>ex) diag(ω)M>,

for all x ∈ [n], where ex is the unit vector equal to one at
index x. Closest to our approach is that of Kulesza et al.

(2015), who propose a weighting scheme to address funda-
mental issues with low rank spectral learning. Their weight-
ing scheme can be seen as redefining the moment condi-
tions

mx(θ) = P3,x,1 −BxWP2,1 ∀x ∈ [n].

With this moment condition, solvers using singular value
decomposition avoid instabilities as noted in Kulesza et al.
(2014). In contrast, our gmm approach takes the direct path
of weighting the moment conditions, i.e., the error in the
statistics for estimating the moments. Kulesza et al. (2015)
also require that a domain expert specify the weighting ma-
trixW; our θ̂

m
is automatically given by our optimal choice

of weighting matrix. That said, in situations where domain
experts can connect a choice of W to a specific task, one
can forgo sample efficiency and specify the weighting ma-
trix of the gmm manually.

Also related to our work are methods that use spectral meth-
ods to initialize techniques for maximum likelihood estima-
tion (Zhang et al., 2014; Balle et al., 2014). Shaban et al.
(2015) follow this approach and propose a two-stage pro-
cedure, which corresponds to typical spectral estimation in
the first stage and optimization upon the second to ensure
feasible solutions (which our method does not). While we
also have an iterative procedure that begins with a spectral
initialization, each of our steps is still within the spectral
framework. Our approach of weighting the moments and
considering suitable penalization is orthogonal to the use of
the spectral estimates for initializing other estimation tech-
niques. It remains open to explore the benefits of these ap-
proaches when merged in practice.

To our knowledge, our work is the first to achieve optimal
sample efficiency rates for spectral estimation, and we pro-
vide a principled approach to incorporating regularization
into the process. However, we now have a highly noncon-
vex optimization problem, and we also rely on row-level el-
ements of the data. Addressing these concerns, while main-
taining sample-efficiency and accuracy bounds, remains an
important direction for future work.
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A Proof of Proposition 1

Proposition 1. Let θ̂
spec

denote the estimator using empir-
ical statistics in Equation 4. Let θ̂

m
denote the M-estimator

given by

b̂
M
1 = P̂1,

b̂
M
∞ = 1n,

B̂
M

= arg min
B∈Rn×n×n

MN (B).

Then θ̂
m
is in the same equivalence class as θ̂

spec
, so they

provide the same probability estimates.

Proof. Let x ∈ [n], and consider a solution to the moment
conditions for parameter Bx ∈ Rn×n given by

min
Bx

‖P3,x,1 −BxP2,1‖2F (16)

Equation 16 can be solved using any convex program, or,
by the Eckart-Young theorem (Eckart and Young, 1936),
through singular value decomposition. Thus we recover the
original spectral estimator: Equation 16 is equivalent to a
singular value decomposition as standard methods in spec-
tral learning do (Hsu et al., 2012; Boots et al., 2010; Boots
and Gordon, 2011; Huang et al., 2013). Note further that
while this problem is nonconvex, all local optima are also
global (Nati and Jaakkola, 2003). Hence the estimates we
obtain using optimization routines are consistent.

Hsu et al. (2012) derive Equation 16 from a different stand-
point and consider the special case of full rank k = m.
They proceed to relax the rank constraint by observing that
the parameters are learned up to a similarity transform:
given the triplet (b1, {Bx},b∞) and an invertible matrix
S ∈ Rn×n, the transformed triplet (b′1 = Sb1, {B′x =
SBxS

−1},b′∞ = S−Tb∞) provide the same joint proba-
bilities as written in Equation (5).

Instead of choosing an invertible similarity transform, one
can findU ∈ Rn×k such thatU>P2,1 (equivalently,U>O)
is invertible, as any inversions regardingU are only involved
through the product U>P2,1. A natural choice is to let U
be the matrix of k left-singular vectors of P2,1 (Hsu et al.,
2012, Lemma 2). Then an equivalent optimization proce-
dure to Equation 16 is simply

min
B′x

‖P3,x,1 −B′xP2,1‖2F (17)

where B′x ≡ U>Bx(UT )† = (U>O)Ax(U>O)−1 ∈
Rk×k. The advantage is that B′x is automatically con-
strained to be of rank k through the similarity transform
on Ax given by U>O. This can be solved trivially with
B′x = P3,x,1P

†
2,1, and in terms of the original parameter

Bx = (U>P3,x,1)(U>P2,1)−1 (Hsu et al., 2012, Proof of
Lemma 3).

B Proof of Proposition 3

Proposition 3. The gradients are

∇RL = J>RWm(X, {R,S}) +∇RPα(R,S) (18)

∇SL = J>S Wm(X, {R,S}) +∇RPα(R,S) (19)

where the matrices JR ∈ Rn3×n2k and JS ∈ Rn3×n2k are
given by

[JR]xij,uvw =

{
−[S>x ]w·[P2,1]·j , if x = u, i = v

0, otherwise
(20)

and

[JS]xij,uvw =

{
−[Rx]iw[P2,1]vj , if x = u

0, otherwise
(21)

Proof. For a general quadratic matrix function f(θ) =
y(θ)>Wy(θ) with given matrix W, its gradient is

∇f(θ) = [∇y(θ)]>(W + W>)y(θ)

Hence for our situation where W is symmetric, it is

∇RL = 2

[
∇R

[
[P̂3,x,1]ij − [Rx]i·S

>
x [P2,1]·j

]
xij∈[n3]

]>
W [m̂xij(θ)]xij∈[n3]

= 2J>RW [m̂xij(θ)]xij∈[n3]

The Jacobian JR is a n3 × n2k matrix, with elements
(xij, uvw) ∈ [n3] × [n2k]. The (xij, uvw)th entry is the
partial derivative of the xijth moment m̂xij on [Ru]vw:

[JR]xij,uvw =
∂

∂[Ru]vw

[
−

k∑
r=1

[Rx]ir[S
>
x ]r·[P2,1]·j

]

=

{
−[S>x ]w·[P2,1]·j if x = u, i = v

0 otherwise

Similarly, there is a Jacobian JS when taking the gradient
with respect to S, and by the same logic the Jacobian with
respect to S is

[JS ]xij,uvw =
∂

∂[Su]vw

[
−

n∑
s=1

k∑
r=1

[Rx]ir[Sx]sr[P2,1]sj

]

=

{
−[Rx]iw[P2,1]vj if x = u

0 otherwise
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