
Simple, Distributed, Accelerated Probabilistic Programming
Dustin Tran*, Matthew Hoffman†, Dave Moore†, Christopher Suter†,

Srinivas Vasudevan†, Alexey Radul†, Matthew Johnson*, Rif A. Saurous†,
*Google Brain, †Google Research

TL;DR

• Deep probabilistic programming provides a vision for accelerating deep
learning research with probabilistic primitives.

• However, it limits research flexibility. It is also an open challenge to
scale PPLs to >50M parameter models and multi-machines.

• We describe a simple approach for embedding probabilistic
programming in a deep learning ecosystem. Name: Edward2.

There are only two ingredients: 1. random variables for specifying models; 2.
tracing for manipulating models for computation.

1. Random Variables

All computable probability distributions are Python functions (programs). Typically,
it executes the generative process.
Programs compose Edward random variables. Random variables are TensorFlow
Tensors augmented with distribution methods such as log_prob and sample.

2. Tracing

pi

log

einsum

einsumsubtract

[2.3 2.3 2.3 2.3 2.3]

add

4.94

add

29.3

z

one_hot

einsumeinsumeinsum

5

einsum

add

tau

log

einsum

einsum

einsum

add

add

-11.5

add

-9.19

mu

-0.05

add

add

200

add

-368

x

subtract

-0.5

subtract

subtract

output

Tracing wraps a language’s primitive operations. A tracer intercepts control just
before those operations are executed.
Example: make_log_joint_fn. Get density function given the generative process.
(This is core to probabilistic inference, e.g., MCMC and variational methods.)
Example: mutilate. Get model with causally intervened variables.
(This is core to causality, e.g., planning, counterfactuals, transfer.)

Model-Parallel Variational Auto-Encoders

With low-level flexibility, Edward2 lets you specify communication primitives for
model-parallel computation.

Image Transformer

Most PPLs focus on a unifying model representation (e.g., generative process). In
Edward2, you can use other represenations.

High-Quality Image Generation

1 16 64 128 256
TPU v2 chips

0

50

100

150

200

250

300

350

400

E
xa

m
pl

es
/S

ec

Speedup over TPUs, slope=1.40

1 16 64 128 256
TPU v2 chips

0

500

1000

1500

2000

E
xa

m
pl

es
/S

ec

Speedup over TPUs, slope=7.49

(left) VQ-VAE on 64x64 ImageNet. 6-layer Image Transformer prior; 4-layer
conv/deconv encoder/decoder.
(right) Image Transformer on 256x256 CelebA-HQ. 5 layers.

Learning to Learn by Variational Inference by Gradient Descent

In Edward2, “inference algorithms” are simply numerical operations. You can take,
e.g., gradients through them for flexible research.

No-U-Turn Sampler

100x speedup over Stan (CPU). 37x over PyMC3 (CPU). Negligible overhead over
handwritten TensorFlow code.

Where are we going next? Ask!

[1] Goodman, N. D. and Stuhlmüller, A. (2014). The design and implementation of probabilistic
programming languages.

[2] Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., and Blei, D. M. (2017).
Deep probabilistic programming. In International Conference on Learning Representations.

	References

