Simple, Distributed, Accelerated Probabilistic Programming

TL;DR

- Deep probabilistic programming provides a vision for accelerating deep learning research with probabilistic primitives.
- However, it limits research flexibility. It is also an open challenge to scale PPLs to >50M parameter models and multi-machines.
- We describe a simple approach for embedding probabilistic programming in a deep learning ecosystem. Name: Edward2.

There are only two ingredients: 1. random variables for specifying models; 2. **tracing** for manipulating models for computation.

1. Random Variables

def model(): p = ed.Beta(1., 1., name="p")x = ed.Bernoulli(probs=p, sample_shape=50, name="x") return x

import neural_net_negative, neural_net_positive

def variational(x): eps = ed.Normal(0., 1., sample_shape=2) if eps[0] > 0: return neural_net_positive(eps[1], x) else:

return neural_net_negative(eps[1], x)

All computable probability distributions are Python functions (programs). Typically, it executes the generative process.

Programs compose Edward random variables. Random variables are TensorFlow Tensors augmented with distribution methods such as log_prob and sample.

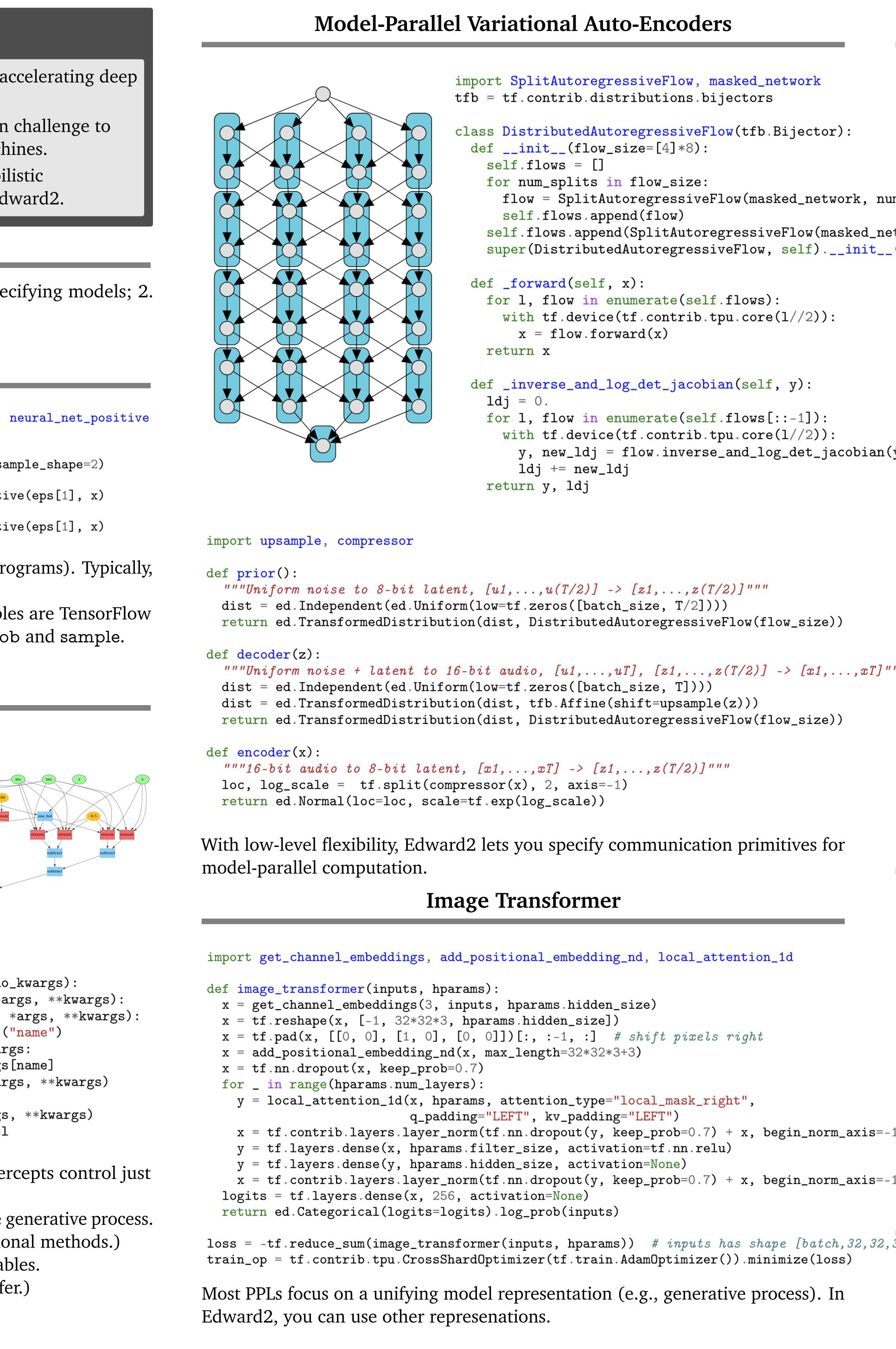
2. Tracing

STACK = [lambda f, *a, **k: f(*a, **k)]@contextmanager def trace(tracer): STACK.append(tracer) yield STACK.pop() addadd def traceable(f): def f_wrapped(*a, **k): STACK[-1](f, *a, **k) return f_wrapped def make_log_joint_fn(model): def log_joint_fn(**model_kwargs): def mutilate(model, **do_kwargs): def tracer(rv_call, *args, **kwargs): def mutilated_model(*args, **kwargs): name = kwargs.get("name") def tracer(rv_call, *args, **kwargs): kwargs["value"] = model_kwargs.get(name rv = rv_call(*args, **kwargs) name = kwargs.get("name") log_probs.append(tf.sum(rv.log_prob(rv) if name in do_kwargs: return rv return do_kwargs[name] log_probs = [] return rv_call(*args, **kwargs) with trace(tracer): with trace(tracer): model(**model_kwargs) return model(*args, **kwargs) return sum(log_probs) return log_joint_fn return mutilated_model

Tracing wraps a language's primitive operations. A tracer intercepts control just before those operations are executed.

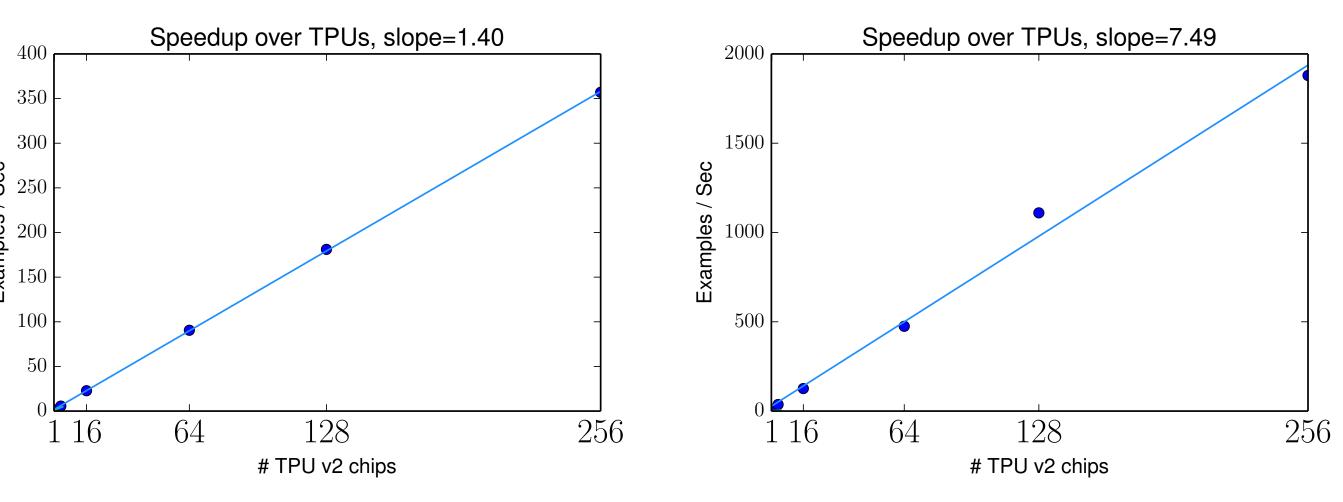
Example: make_log_joint_fn. Get density function given the generative process. (This is core to probabilistic inference, e.g., MCMC and variational methods.) **Example:** mutilate. Get model with causally intervened variables. (This is core to causality, e.g., planning, counterfactuals, transfer.)

Dustin Tran^{*}, Matthew Hoffman[†], Dave Moore[†], Christopher Suter[†], Srinivas Vasudevan[†], Alexey Radul[†], Matthew Johnson^{*}, Rif A. Saurous[†], ^{*}Google Brain, [†]Google Research



High-Quality Image Generation

ormer		System	Runtime (ms)
mbedding_nd, local_attention_1d		Stan (CPU) PyMC3 (CPU)	201.0 74.8
hidden_size) n_size]) ., :] <i># shift pixels right</i> =32*32*3+3)		Handwritten TF (CPU) Edward2 (CPU) Handwritten TF (1 GPU) Edward2 (1 GPU) Edward2 (8 GPU)	66.2 68.4 9.5 9.7 2.3
<pre>n_type="local_mask_right", padding="LEFT") out(y, keep_prob=0.7) + x, begin_norm_axis activation=tf.nn.relu) activation=None) out(y, keep_prob=0.7) + x, begin_norm_axis one) (inputs)</pre>	s=-1han	x speedup over Stan (CPU). 37x over PyM dwritten TensorFlow code. /here are we goi	
<pre>hparams)) # inputs has shape [batch, 32, 3 f.train.AdamOptimizer()).minimize(loss) tation (e.g., generative process). In</pre>	32,: [1] [2]	Goodman, N. D. and Stuhlmüller, A. (2014). The programming languages. Tran, D., Hoffman, M. D., Saurous, R. A., Breve Doop probabilistic programming. In International	do, E., Murphy, K.



(left) VQ-VAE on 64x64 ImageNet. 6-layer Image Transformer prior; 4-layer conv/deconv encoder/decoder. (right) Image Transformer on 256x256 CelebA-HQ. 5 layers.

Learning to Learn by Variational Inference by Gradient Descent

import model, variational, align, x def train(precond): def $loss_fn(x)$: qz = variational(x)

log_joint_fn = make_log_joint_fn(model) kwargs = {align[rv.name]: rv for rv in toposort(qz)} energy = log_joint_fn(x=x, **kwargs) entropy = sum([tf.reduce_sum(rv.entropy()) for rv in toposort(qz)]) return -energy - entropy

grad_fn = tfe.implicit_gradients(loss_fn) optimizer = tf.train.AdamOptimizer(0.1) for _ in range(500): grads = tf.tensordot(precond, grad_fn(x), [[1], [0]]) optimizer.apply_gradients(grads) return loss_fn(x)

In Edward2, "inference algorithms" are simply numerical operations. You can take, e.g., gradients through them for flexible research.

grad_fn = tfe.gradients_function(train) optimizer = tf.train.AdamOptimizer(0.1) for _ in range(100): optimizer.apply_gradients(grad_fn())

No-U-Turn Sampler

gligible overhead over

ext? Ask!

ementation of probabilistic

L, and Blei, D. M. (2017). Deep probabilistic programming. In International Conference on Learning Representations.