

Goal

We aim to do **scalable** and **generic** Bayesian inference:

$$p(\mathbf{z} \mid \mathbf{x}) \approx q(\mathbf{z}; \boldsymbol{\lambda})$$

- Mean-field VI is fast but highly biased, underestimates the variance, and is sensitive to local optima
- Structured VI incorporates dependency but requires explicit knowledge of model and is difficult to construct

Our approach automatically learns the dependency structure within a black box framework, and generalizes both approaches.

Background

Variational inference minimizes KL(q||p) by maximizing the ELBO

$$\mathcal{L}(\boldsymbol{\lambda}) = \mathbb{E}_{q(\mathbf{z};\boldsymbol{\lambda})}[\log p(\mathbf{x},\mathbf{z}) - \log q(\mathbf{z};\boldsymbol{\lambda})].$$

Any random variable $\mathbf{z} = \{\mathbf{z}_1, \ldots, \mathbf{z}_d\} \sim q$ can be factorized as

$$q(\mathbf{z}) = \left[\prod_{i=1}^{d} q(\mathbf{z}_i)\right] c(q(\mathbf{z}_1), \dots, q(\mathbf{z}_d)),$$

where c is a joint density known as the **copula**. For example, the bivariate Gaussian copula is

$$c(\mathbf{u}_1,\mathbf{u}_2;\rho) = \Phi_{\rho}(\Phi^{-1}(\mathbf{u}_1),\Phi^{-1}(\mathbf{u}_2)),$$

which corresponds to the Pearson correlation ρ between z_1 and z_2 . One can factorize a multivariate copula, for example, as

$$c(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}) = \begin{bmatrix} c(\mathbf{u}_{1}, \mathbf{u}_{3})c(\mathbf{u}_{2}, \mathbf{u}_{3})c(\mathbf{u}_{3}, \mathbf{u}_{4}) \end{bmatrix} \begin{bmatrix} c(\mathbf{u}_{1}, \mathbf{u}_{2} | \mathbf{u}_{3})c(\mathbf{u}_{1}, \mathbf{u}_{4} | \mathbf{u}_{3}) \end{bmatrix} \\ \begin{bmatrix} c(\mathbf{u}_{2}, \mathbf{u}_{4} | \mathbf{u}_{1}, \mathbf{u}_{3}) \end{bmatrix},$$

where each pair copula can be of a different family. We learn a choice of this factorization and perform model selection to choose the parametric family for each pair copula. This provides us very **flexible** models of the dependency structure.

Copula variational inference

Dustin Tran¹², David M. Blei², and Edoardo M. Airoldi¹ ¹ Harvard University, ² Columbia University

Method

(1)

(2)

Let $\boldsymbol{\lambda}$ be the original parameters (mean-field or structured) and $\boldsymbol{\eta}$ be the augmented parameters (copula). Consider the factorization of the variational distribution

Figure 1: Approximations to an elliptical Gaussian. First step (red) runs mean-field; second step (blue) fits a copula; third (green) refits the mean-field; fourth (cyan) refits the copula.

Algorithm 1: Copula variational inference (COPULA VI)

Input : Data x , Model $p(\mathbf{x}, \mathbf{z})$, Variational famil
Initialize $\boldsymbol{\lambda}$ randomly, $\boldsymbol{\eta}$ so that c is uniform.
while change in ELBO is above some threshold d
// Fix η , maximize over λ .
Set iteration counter $t = 1$.
while not converged do
Draw sample $\mathbf{u} \sim \text{Unif}([0, 1]^d)$.
Update $\lambda = \lambda + \rho_t \nabla_{\lambda} \mathcal{L}$. (Eq.5, Eq.6)
Increment t.
end
// Fix λ , maximize over η .
Set iteration counter $t = 1$.
while not converged do
Draw sample $\mathbf{u} \sim \text{Unif}([0,1]^d)$.
Update $\boldsymbol{\eta} = \boldsymbol{\eta} + \rho_t \nabla_{\boldsymbol{\eta}} \mathcal{L}$. (Eq.7)
Increment t.
end
end Output: Variational parameters (λ, η) .

ily q.

Figure 2: 10,000 samples, 2 mixture components, and 2 dimensional Gaussian distributions.

Latent space model

Variational inference method Mean-field LRVB COPULA VI (2 steps) COPULA VI (5 steps) COPULA VI (converged)

Table 1: 100,000 node network with dimensional normal distribution $\mathbf{z}_n \sim N(\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$.

COPULA VI dominates mean-field and linear response variational Bayes (LRVB) in accuracy, is less sensitive to local optima and hyperparameters, and is more robust than both methods.

- [1] Dustin Tran, David M. Blei, and Edoardo M. Airoldi. Copula variational inference. In Neural Information Processing Systems, 2015.
- [2] Rajesh Ranganath, Sean Gerrish, and David M. Blei. Black box variational inference. In Artificial Intelligence and Statistics, 2014.
- [3] Rajesh Ranganath, Dustin Tran, and David M. Blei. Hierarchical variational models. *arXiv preprint arXiv:1511.02386*, 2015.

Experiments

ods Predictive Likelihood	Runtime
-383.2	15 min.
-330.5	38 min.
-303.2	32 min.
-80.2	1 hr. 17 min.
-50.5	2 hr.
ith with latent node attrik	outes from a $K = 10$
$\sim N(\mu \Lambda^{-1})$	

References