

TL;DR

- How can we develop models to learn *causal relationships*? How can we capture latent factors which confound cause and effect?
- Using genomics as a case study, we develop causal models.
- We get SOTA, significantly outperforming baselines by 15-45.3%.

Genome-Wide Association Studies

Data consists of individuals with genetic factors x_{nm} and a trait y_n .

- Single nucleotide polymorphisms (SNPs) x_{nm} are encoded as a 0, 1, or 2. $(\approx 100 \text{K}-1\text{M})$
- Phenotypes y_n may represent metabolic levels, height, disease signals. (=1)

Causal Models

Set $\beta = f_{\beta}(\epsilon)$. For each data point,

$$x_n = f_x(\epsilon, \beta), \quad y_n = f_y(\epsilon, x_n, \beta).$$

Variables are functions of its own noise $\epsilon \sim s(\cdot)$ and other variables.

We are interested in learning the causal mechanism f_y . It lets us calculate the causal effect $p(y | do(X = x), \beta)$.

Under the causal graph, $p(y | do(x), \beta) = p(y | x, \beta)$. This means we can estimate f_y from observational data $\{(x_n, y_n)\}$.

Causal Models for Genome-wide Association Studies

Dustin Tran^{†*}, David Blei[†]

[†]Columbia University, ^{*}Google

Causal Model for

Main Idea: Build a generative mode adjust for confounders.

Posit the following causal model:

$$z = f_z(\epsilon),$$

 $x_m = f_{x_m}(\epsilon, z)$ for each SN
 $y = f_y(\epsilon, x, z).$

Confounders. $z_n \sim \text{Normal}(z_n; \mathbf{0}, \mathbf{I}_K)$. It captures each person's "latent code".

Genotypes		Sa	ampl	es		
SNPs	1	1	1	0	0	
	0	1	2	1	2	
	2	1	1	0	1	504
	0	0	1	2	2	PCA Axis o
	2	1	1	0	0	vanati
	0	0	1	1	1	
	2	2	1	1	0	

SNPs. $x_{nm} \sim \text{Binomial}(2, \pi_{nm}).$ Logits are a nonlinear function of z_n and latent logit $\pi_{nm} = \text{NN}([z_n, y_n])$

Traits. $y_n = NN([x_{n,1:M}, z_n, \epsilon] | \theta), \epsilon_n \sim Normal($ 3-layer MLP. A group Lasso prior on weights in first hidden layer encourages sparse inputs.

r GWAS	Causal Inference										
	To learn the mechanism f_y we calculate the posterior over parameters,										
	$p(\theta \mathbf{x}, \mathbf{y}) = \int p(\mathbf{z}, \mathbf{w}, \phi \mathbf{x}, \mathbf{y}) p(\theta \mathbf{x}, \mathbf{y}, \cdots) d\mathbf{z} d\mathbf{w} d\phi.$										
	This accounts for the latent confounders: $p(\mathbf{z} \mathbf{x}, \mathbf{y})$. We effectively infer the post rior of θ , averaged over samples from $p(\mathbf{z} \mathbf{x}, \mathbf{v})$.										
) Trait y	Is this principled? Our work proves $p(\theta \mathbf{x}, \mathbf{y})$ provides a consistent estimator of the causal mechanism f_v .										
	How do you train intractable likelihoo (Available in Edwar	a it? The postender and. We use likel and!)	erior ihoo	is intra d-free v	actable variatio	e; and onal i	d the mod nference [lel admits a [3].			
el of genomes. This lets us	Semi-Synthetic Data										
	Trait	ICM PCA [Pr	ice+	06] LM	[M [Ka	ng+1	10] GCAT	[Song+10]			
	НарМар	99.2 34.8		30.7			99.2				
	TGP	85.6 2.7		43.	.3		70.3				
NP $m = 1,, M$,	HGDP 91.8 6.8			40.	.2		72.3				
	PSD (<i>a</i> = 1) 97.0 80.4			92.	.3		95.3				
	PSD $(a = 0.5)$ 94.3 79.5			90.	.1		93.6				
	PSD ($a = 0.1$)	92.2 38.1		38.	.6		90.4				
	PSD ($a = 0.01$)	92.7 24.2		35.	.1		90.7				
	Spatial ($a = 1$)	90.9 56.4		60.	.0		75.2				
	Spatial ($a = 0.5$)	86.2 50.5		46.6			72.5				
	Spatial ($a = 0.1$)	80.9 2.4		26.6			35.6				
	Spatial ($a = 0.01$) 75.5 1.8		15.	.3		30.2				
of +0.7 +0.4 -0.1 -0.4 -0.5 on	11 configurations of 100,000 SNPs and 940 to 5,000 individuals. Up to 1 billio measurements.										
	Implicit causal models achieve 15-45.3% higher accuracy. They are more robust t spurious associations across all experiments.										
	Northern Finland Birth Cohorts										
t factors	Trait		ICM	GCAT	LMM	PCA	Uncorrect	ted			
	Body ma	ss index	0	0	0	0	0				
$w_m \rfloor \phi \rangle.$	C-reactiv	e protein	2	2	2	2	2				
	Diastolic blood pressure			0	0	0	0				
	Glucose	levels	3	3	2	2	2				
Output	HDL cho	HDL cholesterol levels			4	2	4				
	Height			1	0	0	0				
Hidden Layer	Insulin le	evels	0	0	0	0	0				
	LDL chol	esterol levels	3	4	3	3	3				
	Systolic l	plood pressure	0	0	0	0	0				
	Triglycer	ide levels	2	2	3	2	2				
Input	Yes. We find real-world causes.										
(0,1)	[1] Feng, J. and Sime	on, N. (2017). Spa	rse-inj	out neura	al netwo	orks fo	or high-dime	nsional nonpar			
first hidden laver encourages snarse	metric regression[2]Song. M. Hao V	and classification. V., and Storev ΙΓ	arXiv	preprint 15). Tesi	<i>arxiv:1</i> ting for	/11.0 genet	1392. ic associatio	ns in arhitrari			
LIST INAUTI IN TO CHECHINGED DEALDE		······································			0	0-11-1		wi pittull			

structured populations. *Nature*, 47(5):550–554. Tran, D., Ranganath, R., and Blei, D. M. (2017). Hierarchical implicit models and likelihood-[3] free variational inference. In Neural Information Processing Systems.

Song, M., Hao, W., and Storey, J. D. (2015). Testing for genetic associations in arbitrarily