INTRODUCTION

Stochastic gradient methods have increasingly
become popular for large-scale optimization.
However, they are often numerically unstable
and statistically inefficient because of their sen-
sitivity to additional hyperparameters and sub-
optimal usage of the data’s information. We
propose a new learning procedure, termed av-
eraged implicit stochastic gradient descent (ai-SGD),
which combines stability through proximal (im-
plicit) updates and statistical efficiency through
averaging of the iterates.

We prove that ai-SGD is computationally effi-
cient, statistically optimal, and stable. Further-
more, we demonstrate in experiments that its per-
formance is comparable to state-of-the-art algo-
rithms, with the added bonuses of statistical ef-
ficiency and stability.

BACKGROUND

Consider a random variable ¢ € = C R?, a param-
eter space © C R?, and a loss function ¢ : © x = —
R. We wish to solve the following stochastic opti-
mization problem:

9, = argminE [£(0, )], (1)

where the expectation is with respect to . Formu-
lation (1) encompasses a wide variety of machine
learning tasks. For example, learning through
least-mean squares, logistic regression or SVM,
can be cast into (1) by considering ¢ as the KL-
divergence between the distribution of { and the
model family parameterized by 6.

If an empirical distribution of £ is used, one recov-
ers the problem of empirical loss minimization,
which includes maximum likelihood estimation
(MLE), or maximum a posteriori (MAP) if there
are regularization terms, which are widely used
in machine learning and statistics.

The standard stochastic gradient descent, which
we term an explicit method, forms an update
corresponding to information of the score func-
tion evaluated at the previous iterate, c.f., our
method.

We propose a stochastic approximation proce-
dure to solve (1) defined for datapoints n =
1,2,...,as follows:

0n =01 —1n00(0,,En), Oy € O, (2)

1=1

where {£1,&,...} are ii.d. realizations of &
and assumed to be a continuous stream of data,
00(0,&,) is a subgradient of the loss function with
respect to 0 at realized value &, and {7, } is a non-
increasing sequence of positive real numbers.

We will refer to the procedure defined by (2) and
(3) as averaged implicit stochastic gradient descent, or
ai-SGD for short. Our approximation procedure
combines two ideas, namely an implicit formula-
tion of the updates in Eq. (2) as 0,, appears on
both sides of the update, and averaging of the it-
erates 0,, in Eq. (3).

EXPERIMENTS
2.1 RCV1 dataset

The task is to classity documents belonging to class CCAT, which has d =
47,152 features and is split into a training set of N = 781,265 observations
and a test set of 23, 149 observations. We implement a linear SVM using hinge
loss and logistic regression using log loss. We compare it to current state-of-
the-art algorithms. Our results demonstrate comparable performance, mea-
sured by misclassification error, as all methods iterate over the data.
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THEORY

Theorem 1.1 (Computational efficiency) For data
¢ = (x,y), and a differentiable and linear loss ((6, ),

the implicit update (2) of ai-SGD is
(0, En) = A VE(Or—1,&n),

where the scalar \,, € R satisfies the fixed-point equa-
tion,

)\n _ 4 (en—l _ )\n’)/ng (en—la‘gn)ajnagn)7 (4)

g,(en—l . fn)

+ Remark: Numerical solution of Eq. (4) is straightfor-
ward.

Theorem 1.2 (Statistical efficiency) Suppose there is a
positive semi-definite d X d matrix ¥, such that

(0, &) — (04, €) = F(0y, — 04) + 7,

where {ry} is a sequence of random variables for which
|| = o(||0n — 04||), almost-surely. Then,

n—1
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where ||Dg|| = 0OQQ), e, = VL(0.,&), én =
(1/n) >, €i, and SSPHIQR| = o(n). In particular,
(0., — 0,) — F~'&,, in probability.

* Remark: 0,, achieves the Cramér-Rao bound.

Theorem 1.3 (Stability) Under standard assumptions,
and supposing E [[|V£(0,£)||?| = 0, ai-SGD satisfies

& [116: — 641"
mz_aX W | 90 — 9*| . a O(l).

Let 2c > 0 be a small constant and define n. =
c)yu|t/®, then for the explicit procedure,

3 (116 — 0.
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+ Remark: Iterates of ai-SGD are unconditionally stable.

The task is to classify class 2 among 7 forest cover types, which has d = 54 fea-
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tures and is split into a training set of N = 406, 708 observations and a test set
of 174,304 observations. Performances indicate similar behavior as in RCV1;
here we perform sensitivity analysis on the regularization parameter in or-
der to examine stability to compared to other methods. We see that while all
methods achieve comparable performance for optimized hyperparameters,
ai-SGD is more robust to any misspecification.
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