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Abstract

Iterative procedures for parameter estimation
based on stochastic gradient descent (���) allow
the estimation to scale to massive data sets. How-
ever, they typically su�er from numerical insta-
bility, while estimators based on ��� are statisti-
cally ine�cient as they do not use all the informa-
tion in the data set. To address these two issues we
propose an iterative estimation procedure termed
averaged implicit ��� (��-���). For statistical
e�ciency ��-��� employs averaging of the iter-
ates, which achieves the Cramér-Rao bound un-
der strong convexity, i.e., it is asymptotically an
optimal unbiased estimator of the true parameter
value. For numerical stability ��-��� employs
an implicit update at each iteration, which is simi-
lar to updates performed by proximal operators in
optimization. In practice, ��-��� achieves com-
petitive performance with state-of-the-art proce-
dures. Furthermore, it is more stable than averag-
ing procedures that do not employ proximal up-
dates, and is simple to implement as it requires
fewer tunable hyperparameters than procedures
that do employ proximal updates.

1 Introduction

The majority of problems in statistical estimation can be
cast as finding the parameter value ✓

?

2 ⇥ such that

✓
?

= argmin

✓2⇥

E (L(✓, ⇠)) , (1)

where the expectation is with respect to the random vari-
able ⇠ 2 ⌅ ✓ Rd that represents the data, ⇥ ✓ Rp is the
parameter space, and L : ⇥⇥ ⌅ ! R is a loss function. A
popular procedure for solving Eq. (1) is stochastic gradient
descent (���) (Zhang, 2004; Bottou, 2004, for example),
where a sequence ✓

n

approximates ✓
?

, and is updated itera-
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tively, one data point at a time, through the iteration

✓
n

= ✓
n�1

� �
n

rL(✓
n�1

, ⇠
n

), (2)

where {⇠
1

, ⇠
2

, . . .} is a stream of i.i.d. realizations of ⇠, and
{�

n

} is a non-increasing sequence of positive real numbers,
known as the learning rate. Thenth iterate ✓

n

in ��� (2) can
be viewed as an estimator of ✓

?

. To evaluate such estimators
it is typical to consider three properties: convergence rate
and numerical stability, by studying the mean-squared er-
rors E

�||✓
n

� ✓
?

||2�; and statistical e�ciency, by studying
the limit nVar (✓

n

) as n ! 1.

While computationally e�cient, the ��� procedure (2) suf-
fers from numerical instability and statistical ine�ciency.
Regarding stability, ��� is sensitive to specification of the
learning rate �

n

since the mean-squared errors can diverge
arbitrarily when �

n

is misspecified with the respect to prob-
lem parameters, e.g., the convexity and Lipschitz parame-
ters of the loss function (Benveniste et al., 1990; Moulines
and Bach, 2011). Several solutions have been proposed to
resolve this issue, e.g., using projections or gradient clip-
ping. However, they are typically heuristic and, thus, hard
to generalize. Regarding statistical e�ciency, ��� loses
statistical information. In fact, the amount of information
loss depends on the misspecification of �

n

with respect to
the spectral gap of the matrix E

�r2L(✓
?

, ⇠)
�

(Toulis et al.,
2014; Toulis and Airoldi, 2015), also known as the Fisher
information matrix. To resolve this issue second-order in-
formation needs to be leveraged, but this sacrifices the com-
putational simplicity of ��� procedures.

In this paper, we aim for the ideal combination of
numerical stability, computational simplicity, and statis-
tical e�ciency using the following iterative procedure:

��-���
✓
n

= ✓
n�1

� �
n

rL(✓
n

, ⇠
n

), (3)

¯✓
n

= (1/n)

nX

i=1

✓
i

. (4)

Our proposed procedure, termed averaged implicit ���
(��-���), is comprised of two inner procedures. The first
procedure employs updates given in Eq. (3), which are
implicit because the iterate ✓

n

appears on both sides of
the equation. Procedure (3), also known as implicit ���
(Toulis et al., 2014), aims to stabilize the updates of the
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classic ��� procedure (2). In fact, implicit ��� can be
motivated as the limit of a sequence of classic ��� pro-
cedures. To see this, first fix the sample history F

n�1

=

{✓
0

, ⇠
1

, ⇠
2

, . . . , ⇠
n�1

}. Then, the classic (not implicit) ���
procedure is ✓

n

= ✓
n�1

� �
n

rL(✓
n�1

, ⇠
n

) , ✓
(1)

n

. If we
“trust” ✓(1)

n

to be a better estimate of ✓
?

than ✓
n�1

, then we
can use ✓

(1)

n

instead of ✓
n�1

in computing the loss func-
tion at data point ⇠

n

. This leads to a revised procedure
✓
n

= ✓
n�1

� �
n

rL(✓
(1)

n

, ⇠
n

) , ✓
(2)

n

. Likewise, we can
use ✓

(2)

n

instead of ✓(1)
n

, and so on. If we repeat this argu-
ment ad infinitum, then we get the following sequence of
improved ��� procedures,

✓(1)
n

= ✓
n�1

� �
n

rL(✓
n�1

, ⇠
n

),

✓(2)
n

= ✓
n�1

� �
n

rL(✓(1)
n

, ⇠
n

),

✓(3)
n

= ✓
n�1

� �
n

rL(✓(2)
n

, ⇠
n

),

. . .

✓(1)

n

= ✓
n�1

� �
n

rL(✓(1)

n

, ⇠
n

). (5)

In the limit, assuming a unique fixed point is reached almost
surely, the final procedure of sequence (5) can be rewrit-
ten as ✓

n

= ✓
n�1

� �
n

rL(✓
n

, ⇠
n

), which is identical to
implicit ���. Thus, implicit ��� can be viewed as a re-
peated application of classic ���, where we keep updat-
ing the same iterate ✓

n�1

using the same data point ⇠
n

un-
til a fixed point is reached. This idea is related to the so-
called self-consistency principle in statistics; many statisti-
cal estimation methods, such as Expectation-Maximization
or Rao-Blackwellisation, can be obtained by invoking the
self-consistency principle (Tarpey and Flury, 1996).

The stability improvement achieved by implicit updates can
be motivated by the following argument. Assume for sim-
plicity that L is strongly convex almost surely with param-
eter µ > 0. Then, we can derive a recursive inequality on
the mean-squared error of implicit ��� from a rewrite of
the implicit ��� procedure (3) as follows,

✓
n

+ �
n

rL(✓
n

, ⇠
n

) = ✓
n�1

,

||✓
n

� ✓
?

||2 + 2�
n

(✓
n

� ✓
?

)

|rL(✓
n

, ⇠
n

)  ||✓
n�1

� ✓
?

||2,
(1 + �

n

µ)||✓
n

� ✓
?

||2  ||✓
n�1

� ✓
?

||2,
||✓

n

� ✓
?

||2  1

1 + �
n

µ
||✓

n�1

� ✓
?

||2,

which implies that ||✓
n

� ✓
?

||2 is contracting almost surely.
In contrast, the classic ��� procedure does not share this
contracting property.

While the implicit update of Eq. (3) aims to achieve stabil-
ity, the averaging of the iterates in Eq. (4) aims to achieve
optimal statistical e�ciency. Ruppert (1988) gave a nice in-
tuition on why iterate averaging can lead to statistical opti-
mality. When the learning rate is �

n

/ n�1, then ¯✓
n

�✓
?

is
a weighted average ofn error variablesrL(✓

i�1

, ⇠
i

), which

therefore are significantly autocorrelated. However, when
�
n

/ n�� with � 2 (0, 1), then ¯✓
n

� ✓
?

is the average
of n�

log n error variables, which become uncorrelated in
the limit. Thus, averaging improves the estimation accu-
racy.

1.1 Related work

The implicit update (3) is equivalent to solving

✓
n

= argmin

✓2⇥

⇢
1

2�
n

||✓ � ✓
n�1

||2 + L(✓, ⇠
n

)

�
. (6)

Arguably, the first method that used an update similar to (6)
for estimation was the normalized least-mean squares fil-
ter of Nagumo and Noda (1967), used in signal processing.
This update is also used by the incremental proximal method
in optimization (Bertsekas, 2011), and has shown superior
performance to classic ��� both in theory and applications
(Bertsekas, 2011; Toulis et al., 2014; Défossez and Bach,
2015; Toulis and Airoldi, 2014). Overall, implicit updates
lead to similar convergence rates as classic ��� updates,
but are significantly more stable. This stability can also be
motivated from a Bayesian interpretation of Eq. (6), where
✓
n

is the posterior mode of a model with the standard mul-
tivariate normal N (✓

n�1

, �
n

I) as the prior, L(✓, ·) as the
log-likelihood, and ⇠

n

as the nth data sample.

A statistical analysis of procedure (3) without averaging
was done by Toulis et al. (2014) who derived the asymp-
totic variance Var (✓

n

) of ✓
n

, and provided an algorithm to
e�ciently solve the fixed-point equation (3) for ✓

n

in the
family of generalized linear models. In the online learn-
ing literature, Kivinen et al. (2006) and Kulis and Bartlett
(2010) have also analyzed implicit updates in terms of re-
gret; Schuurmans and Caelli (2007) have further applied
implicit procedures on learning with kernels. Notably, the
implicit update (6) is related to the importance weight up-
dates proposed by Karampatziakis and Langford (2010), but
the two update forms are not equivalent, and can be com-
bined in practice (Karampatziakis and Langford, 2010, Sec-
tion 5).

Assuming that the expected loss ` is known, instead of up-
date (6) we could use the update

✓+
n

= argmin

✓2⇥

⇢
1

2�
n

||✓ � ✓
n�1

||2 + `(✓)

�
. (7)

In optimization this mapping from ✓
n�1

to ✓+
n

in Eq. (7)
is known as a proximal operator, and the procedure is a
special instance of the proximal point algorithm (Rock-
afellar, 1976). Thus, implicit ��� involves mappings that
are stochastic versions of mappings from proximal opera-
tors. The stochastic proximal gradient algorithm (Singer
and Duchi, 2009; Parikh and Boyd, 2013; Rosasco et al.,
2014) is related but di�erent to implicit ���. In contrast
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to implicit ���, the stochastic proximal gradient algorithm
first makes a classic ��� update (forward step) and then an
implicit update (backward step). Only the forward step is
stochastic whereas the backward proximal step is not. This
may increase convergence speed but may also introduce in-
stability due to the forward step. Interest on proximal op-
erators has surged in recent years because they are non-
expansive and converge with minimal assumptions. Fur-
thermore, they can be applied on non-smooth objectives,
and can easily be combined in modular algorithms for opti-
mization in large-scale and distributed settings (Parikh and
Boyd, 2013). The idea has also been generalized through
splitting algorithms (Lions and Mercier, 1979; Beck and
Teboulle, 2009; Singer and Duchi, 2009; Duchi et al., 2011).
Krakowski et al. (2007) and Nemirovski et al. (2009) have
shown that proximal methods can fit better in the geometry
of the parameter space ⇥, and Toulis and Airoldi (2014)
have made a connection to shrinkage methods in statis-
tics.

Two recent procedures based on stochastic proximal up-
dates are ����-���� (Xiao and Zhang, 2014) and ����-
��� (Schmidt et al., 2013, Section 6). The main idea in
both methods is to periodically compute an estimate of the
full gradient averaged over all data points in order to re-
duce the variance of stochastic gradients. This requires a fi-
nite data setting, whereas ��-��� also applies to streaming
data. Moreover, the periodic calculations in ����-���� are
controlled by additional hyperparameters, and the periodic
calculations in ����-��� require storage of the full gradi-
ent at every iteration. ��-��� di�ers because it employs
averaging to achieve statistical e�ciency, has no additional
hyperparameters or major storage requirements, and thus it
has a simpler implementation.

Averaging of the iterates in Eq. (4) is the other key compo-
nent of ��-���. Averaging was proposed and analyzed in
the stochastic approximation literature by Ruppert (1988)
and Bather (1989). Polyak and Juditsky (1992) substan-
tially expanded the scope of the averaging method by prov-
ing asymptotic optimality of the classic ��� procedure
with averaging under suitable assumptions. Their results
showed clearly that slowly-convergent stochastic approxi-
mations (achieved, for example, when the learning rates are
large) need to be averaged. Recent work has analyzed clas-
sic ��� with averaging (Zhang, 2004; Xu, 2011; Shamir
and Zhang, 2012; Bach and Moulines, 2013) and has shown
their superiority in numerous learning tasks.

1.2 Overview of results

In this paper, we study the iterates ✓
n

and use the results to
study ¯✓

n

as an estimator of ✓
?

. Under strong convexity of
the expected loss, we give upper bounds for the squared er-
rors E

�||✓
n

� ✓
?

||2� and E
�
¯✓
n

� ✓
?

||2� in Theorem 1 and
Theorem 2, respectively.

Two main results are derived from our theoretical anal-
ysis. First, ¯✓

n

achieves the Cramér-Rao bound, i.e., no
other unbiased estimator of ✓

?

can do better in the limit,
which is equivalent to the optimal O(1/n) rate of conver-
gence for first-order procedures. Second, ��-��� is signif-
icantly more stable to misspecification of the learning rate
relative to classic averaged ��� procedures with respect to
the learning problem parameters, e.g., convexity and Lips-
chitz constants. Finally, we perform experiments on several
standard machine learning tasks, which show that ��-���
comes closer to combining stability, optimality, and sim-
plicity than other competing methods.

2 Preliminaries

Notation. Let F
n

= {✓
0

, ⇠
1

, ⇠
2

, . . . , ⇠
n

} denote the filtra-
tion that process ✓

n

(3) is adapted to. The norm || · || will
denote the L

2

norm. The symbol , indicates a definition,
and the symbol def

= denotes “equal by definition”. For exam-
ple, x , y defines x as equal to known variable y, whereas
x

def
= y denotes that the value of x is equal to the value of y,

by definition. We will not use this formalism when defin-
ing constants. For two positive sequences a

n

, b
n

, we write
b
n

= O(a
n

) if there exists a fixed c > 0 such that b
n

 ca
n

,
for all n; also, b

n

= o(a
n

) if b
n

/a
n

! 0. When a positive
scalar sequence a

n

is monotonically decreasing to zero, we
write a

n

# 0. Similarly, for a sequence X
n

of vectors or
matrices, X

n

= O(a
n

) denotes that ||X
n

|| = O(a
n

), and
X

n

= o(a
n

) denotes that ||X
n

|| = o(a
n

). For two matrices
A,B, A � B denotes that B � A is nonnegative-definite;
tr(A) denotes the trace of A.

We now introduce the main assumptions pertaining to the
theory of this paper.
Assumption 1. The loss function L(✓, ⇠) is almost-surely
di�erentiable. The random vector ⇠ can be decomposed as
⇠ = (x, y), x 2 Rp, y 2 Rd, such that

L(✓, ⇠) ⌘ L(x|✓, y). (8)

Assumption 2. The learning rate sequence {�
n

} is defined
as �

n

= �
1

n�� , where �
1

> 0 and � 2 (1/2, 1].
Assumption 3 (Lipschitz conditions). For all ✓

1

, ✓
2

2 ⇥, a
combination of the following conditions is satisfied almost-
surely:

(a) The loss function L is Lipschitz with parameter �
0

, i.e.,

|L(✓
1

, ⇠)� L(✓
2

, ⇠)|  �
0

||✓
1

� ✓
2

||,

(b) The map rL is Lipschitz with parameter �
1

, i.e.,

||rL(✓
1

, ⇠)�rL(✓
2

, ⇠)||  �
1

||✓
1

� ✓
2

||,

(c) The map r2L is Lipschitz with parameter �
2

, i.e.,

||r2L(✓
1

, ⇠)�r2L(✓
2

, ⇠)||  �
2

||✓
1

� ✓
2

||.
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Assumption 4. The observed Fisher information matrix,
ˆI(✓) , r2L(✓, ⇠), has non-vanishing trace, i.e., there ex-
ists � > 0 such that tr(ˆI(✓)) � �, almost-surely, for all
✓ 2 ⇥. The expected Fisher information matrix, I(✓) ,
E
⇣
ˆI(✓)

⌘
, has minimum eigenvalue 0 < �

f

 �, for all
✓ 2 ⇥.
Assumption 5. The zero-mean random variable W

✓

,
rL(✓, ⇠)�r`(✓) is square-integrable, such that, for a fixed
positive-definite ⌃,

E
�
W

✓?W
|
✓?

� � ⌃.

Remarks. Assumption 1 puts a constraint on the loss func-
tion, which is not very restrictive because numerous ma-
chine learning models indeed depend on the parameter ✓
through a linear combination with features x. A notable ex-
ception includes loss functions with a regularization term.
Although it is easy to add regularization to ��-��� we will
not do so in this paper because ��-��� works well without
it, since the proximal operator (6) already regularizes the
estimate ✓

n

towards ✓
n�1

. In experiments, regularization
neither improved nor worsened ��-��� (see supplementary
material for more details). Assumption 2 on learning rates
and Assumption 5 are standard in the literature of stochastic
approximations, dating back to the original paper of Rob-
bins and Monro (1951) in the one-dimensional parameter
case.

Assumptions on Lipschitz gradients, namely Assumption
3(b) and Assumption 3(c), have been relaxed in classical
stochastic approximation theory (Benveniste et al., 1990,
for example). However, these two Lipschitz conditions are
commonly used in order to simplify the non-asymptotic
analysis (Moulines and Bach, 2011). Assumption 3(a) is
less standard in classic ��� literature but has so far been
standard in the limited literature on implicit ��� (Bertsekas,
2011). It is also an open problem whether a clean stability
result similar to Theorem 1 can be derived under Assump-
tion 3(b) instead of Assumption 3(a). We discuss this issue
after the proof of Theorem 1 in the supplementary mate-
rial.

Assumption 4 makes two claims. The first claim on the ob-
served Fisher information matrix is a relaxed form of strong
convexity for the lossL(✓, ⇠). However, in contrast to strong
convexity, this claim allows several eigenvalues of r2L to
be zero. The second claim of Assumption 4 is equivalent
to strong convexity of the expected loss `(✓). From a statis-
tical perspective, strong convexity posits that there is infor-
mation in the data for all elements of ✓

?

. This assumption is
necessary to derive bounds on the errors E

�||✓
n

� ✓
?

||2�,
and has been used to show optimality of classic ��� with
averaging (Polyak and Juditsky, 1992; Ljung et al., 1992;
Xu, 2011; Moulines and Bach, 2011).

Overall, our assumptions are weaker than the assumptions
in the limited literature on implicit ���. For example,

Bertsekas (2011, Assumptions 3.1, 3.2) assumes almost-
sure bounded gradientsrL(✓, ⇠) in addition to Assumption
3(a). We discuss more details in the supplementary material
after the proof of Theorem 1.

3 Theory

In this section we present our theoretical analysis of ��-
���. All proofs are given in the supplementary material.
The main technical challenge in analyzing implicit ��� (3)
is that unlike the typical analysis with classic ��� (2), the
error ⇠

n

is not conditionally independent of ✓
n

. This im-
plies that E (rL(✓

n

, ⇠
n

)| ✓
n

) 6= `(✓
n

), which makes it no
longer possible to use the convexity properties of ` to ana-
lyze the errors E

�||✓
n

� ✓
?

||2�, as it is common in the lit-
erature.

As mentioned earlier, to circumvent this issue other authors
have made strict assumptions of almost-sure bounded gra-
dients or strong convexity (Bertsekas, 2011). In this paper,
we rely on weaker conditions, namely the Lipschitz assump-
tions 3(a)-3(c), which are also used in non-implicit proce-
dures. Our proof strategy relies on a master lemma (Lemma
3 in supplementary material) for the analysis of recursions
that appear to be typical in implicit procedures. This result
is novel to our best knowledge, and it can be useful in future
research on implicit procedures.

3.1 Computational e�ciency

Our first result enables e�cient computation of the implicit
update (3). In general, this can be expensive due to solving
the fixed-point equation of the implicit update at every itera-
tion. We reduce this multidimensional equation to an equa-
tion of only one dimension. Furthermore, under almost-
sure convexity of the loss function, e�cient search bounds
for the one-dimensional fixed-point equation are available.
This result generalizes an earlier result in e�cient computa-
tion of implicit updates on generalized linear models (Toulis
et al., 2014, Algorithm 1).

Definition 1. Suppose that Assumption 1 holds. For ob-
servation ⇠ = (x, y), the first derivative with respect to the
natural parameter x|✓ is denoted byL0

(✓, ⇠), and is defined
as

L0
(✓, ⇠) , @L(✓, ⇠)

@(x|✓)
def
=

@L(x|✓, y)
@(x|✓)

. (9)

Similarly, L00
(⇠, ✓) , @L

0
(✓,⇠)

@(x

|
✓)

.

Lemma 1. Suppose that Assumption 1 holds, and consider
functions L0, L00 from Definition 1. Then, almost-surely,

rL(✓
n

, ⇠
n

) = s
n

rL(✓
n�1

, ⇠
n

); (10)
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the scalar s
n

satisfies the fixed-point equation,

s
n


n�1

= L0
(✓

n�1

� s
n

�
n


n�1

x
n

, ⇠
n

) , (11)

where 
n�1

, L0
(✓

n�1

, ⇠
n

). Moreover, if L00
(✓, ⇠) � 0

almost-surely for all ✓ 2 ⇥, then

s
n

2
(
[

n�1

, 0) if 
n�1

< 0,

[0,
n�1

] otherwise.

Remarks. Lemma 1 has two parts. First, it shows that
the implicit update can be performed by obtaining s

n

from
the fixed-point Eq. (10), and then using rL(✓

n

, ⇠
n

) =

s
n

rL(✓
n�1

, ⇠
n

) in the implicit update (3). The fixed-point
equation can be solved through a numerical root-finding
procedure (Kivinen et al., 2006; Kulis and Bartlett, 2010;
Toulis et al., 2014). Second, when the loss function is con-
vex, then narrow search bounds for s

n

are available. This
property holds, for example, when the loss function is the
negative log-likelihood in an exponential family.

3.2 Non-asymptotic analysis

Our next result is on the mean-squared errors
E
�||✓

n

� ✓
?

||2�. These errors show the stability and
convergence rates of implicit ��� and are used in com-
bination with bounds on errors E

�||✓
n

� ✓
?

||4� to derive
bounds on the errors E

�||¯✓
n

� ✓
?

||2� of the averaged
procedure.1

Theorem 1. Suppose that Assumptions 1, 2, 3(a), and 4
hold. Define �

n

, E
�||✓

n

� ✓
?

||2�, and constants �

2

=

4�2

0

P
�2

i

< 1, ✏ = (1 + �
1

(� � �
f

))

�1, and � = 1 +

�
1

�
f

✏. Also let ⇢
�

(n) = n1�� if � 6= 1 and ⇢
�

(n) = log n
if � = 1. Then, there exists constant n

0

> 0 such that, for
all n > 0,

�
n

(8�2

0

�
1

�/�
f

✏)n��

+ e� log �·⇢�(n)
[�

0

+ �n0
�

2

].

Remarks. According to Theorem 1, the convergence rate
of the implicit iterates ✓

n

is O(n��

). This matches ear-
lier results on rates of classic ��� (Benveniste et al., 1990;
Moulines and Bach, 2011). The most important di�erence,
however, is that the implicit procedure discounts the initial
conditions �

0

at an exponential rate, regardless of the spec-
ification of the learning rate. As shown by Moulines and
Bach (2011, Theorem 1), in classic ��� there exists a term
exp(�2

1

�2

1

n1�2�

) in front of the initial conditions, which
can be catastrophic if the learning rate parameter �

1

is mis-
specified. In contrast, the implicit iterates are uncondition-
ally stable, i.e., any specification of the learning rate will
lead to a stable discounting of the initial conditions.

1 The bounds for the fourth moments E
�
||✓n � ✓?||4

�
are

given in the supplementary material because they rely on the same
intermediate results as for E

�
||✓n � ✓?||2

�
.

Theorem 2. Consider the ��-��� procedure (4), and sup-
pose that Assumptions 2, 3(a), 3(c), 4, and 5 hold. Then,

(E
�||¯✓

n

� ✓
?

||2�)1/2  1p
n

�
tr(r2`(✓

?

)

�1

⌃r2`(✓
?

)

�1

)

�
1/2

+O(n�1+�/2

) +O(n��

)

+O(exp(� log � · n1��/2).

Remarks. The full version of Theorem 2, which includes
all constants, is given in the supplementary material. Even
in its shortened form, Theorem 2 delivers three main re-
sults. First, the iterates ¯✓

n

attain the Cramér-Rao lower
bound, i.e., any other unbiased estimator of ✓

?

cannot have
lower MSE than ¯✓

n

. From an optimization perspective,
¯✓
n

attains the rate O(1/n), which is optimal for first-order
methods (Nesterov, 2004). This result matches the asymp-
totic optimality of averaged iterates from classic ��� pro-
cedures, which has been proven by Polyak and Juditsky
(1992).

Second, the remaining rates are O(n�2+�

) and O(n�2�

).
This implies the optimal choice � = 2/3 for the expo-
nent of the learning rate. It extends the results of Ruppert
(1988), and more recently by Xu (2011), and Moulines and
Bach (2011), on optimal exponents for classic ��� proce-
dures.

Third, as with non-averaged implicit iterates in Theorem 1,
the averaged iterates ¯✓

n

have a decay of the initial condi-
tions regardless of the specification of the learning rate pa-
rameter. This stability property is inherited from the un-
derlying implicit ��� procedure (3) that is being averaged.
In contrast, averaged iterates of classic ��� procedures can
diverge numerically because arbitrarily large terms can ap-
pear in front of initial conditions (Moulines and Bach, 2011,
Theorem 3). We demonstrate this stability in the experi-
ment of Section 4.1.

4 Experiments

In this section, we show that ��-��� achieves compara-
ble, and sometimes superior, results to other methods while
combining statistical e�ciency, stability, and simplicity. In
our experiments, we compare our procedure to the follow-
ing procedures:

• ���: Classic stochastic gradient descent in its standard
formulation (Sakrison, 1965; Zhang, 2004), which em-
ploys the update ✓

n

= ✓
n�1

� �
n

rL(✓
n�1

, ⇠
n

).

• �������� ���: Stochastic gradient descent procedure
introduced in Toulis et al. (2014) which employs im-
plicit update (3) without averaging. It is robust to
misspecification of the learning rate but also exhibits
slower convergence in practice relative to classic ���.
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• ����: Averaged stochastic gradient descent procedure
with classic updates of the iterates (Xu, 2011; Shamir
and Zhang, 2012; Bach and Moulines, 2013). This is
equivalent to ��-��� where the update (3) is replaced
by the classic step ✓

n

= ✓
n�1

� �
n

rL(✓
n�1

, ⇠
n

).

• ����-����: A proximal version of the stochastic gra-
dient descent procedure with progressive variance re-
duction (SVRG) (Xiao and Zhang, 2014).

• ����-���: A proximal version of the stochastic aver-
age gradient (SAG) procedure (Schmidt et al., 2013).
While its theory has not been formally established,
����-��� has shown similar convergence properties
to ����-���� in practice.

• �������: A stochastic gradient descent procedure
with a form of diagonal scaling to adapt the learning
rate (Duchi et al., 2011).

Note that ����-���� and ����-��� are applicable only
to fixed data sets and not to the streaming setting. There-
fore the theoretical linear convergence rate of these meth-
ods refers to convergence to an empirical minimizer (e.g.,
maximum likelihood, or maximum a-posteriori if there is
regularization), and not to the ground truth ✓

?

. On the other
hand, ��-��� can be applied to both data settings.

We also note that �������, and similar adaptive
schedules, (Tieleman and Hinton, 2012; Kingma and
Ba, 2015) e�ectively approximate the natural gradient
I(✓)�1rL(✓, ⇠) by using a multi-dimensional learning
rate. These learning rates have the added advantage of be-
ing less sensitive than one-dimensional rates to tuning of
hyperparameters, and can be combined in practice with ��-
���.

4.1 Statistical e�ciency and stability

We first demonstrate the theoretical results on the stabil-
ity and statistical optimality of ��-���. To do so, we fol-
low a simple normal linear regression example from Bach
and Moulines (2013). Let N = 10

6 be the number of
observations and p = 20 be the number of features. Let
✓
?

= (0, 0, . . . , 0)| be the ground truth. The random vari-
able ⇠ is decomposed as ⇠

n

= (x
n

, y
n

), where the feature
vectors x

1

, . . . , x
N

⇠ N
p

(0, H) are i.i.d. normal random
variables, and H is a randomly generated symmetric ma-
trix with eigenvalues 1/k, for k = 1, . . . , p. The outcome
y
n

is sampled from a normal distribution as y
n

| x
n

⇠
N (x|

n

✓⇤, 1), for n = 1, . . . , N . Our loss function is de-
fined as the squared residual, i.e., L(✓, ⇠

n

) = (y
n

� x|
n

✓)2,
and thus `(✓) = E (L(✓, ⇠)) = (✓�✓

?

)

|H(✓�✓
?

).

We choose a constant learning rate �
n

⌘ �
1

according to
the average radius of the data R2

= trace(H), and for both
���� and ��-��� we collect iterates ✓

n

, n = 1, . . . , N ,
and keep the average ¯✓

n

. In Figure 1, we plot `(¯✓
n

) for each

iteration for a maximum of N iterations in log-log space.
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Figure 1: Loss of ��-���, ����, and �������� ���, on
simulated multivariate normal data with N = 10

6 observa-
tions, d = 20 features. The plot shows that ��-��� achieves
stability regardless of the specification of the learning rate
�
n

⌘ �
1

. In contrast, ���� diverges when the learning rate
is only slightly misspecified (e.g., solid blue line).

Figure 1 shows that ��-��� performs on par with ���� for
the rates at which ���� is known to be optimal. However,
the benefit of the implicit procedure (3) in ��-��� becomes
clear as the learning rate increases. Notably, ��-��� re-
mains stable for learning rates that are above the theoretical
threshold, i.e., when �

1

> 1/R2, whereas ���� diverges
above that threshold, e.g., when �

1

= 2/R2. This stable be-
havior is also exhibited in �������� ���, but �������� ���
converges at a slower rate than ��-���, and thus does not
combine stability with statistical e�ciency. This behavior
is also reflected for ��-��� when using decaying learning
rates, e.g., �

n

/ 1/n.

4.2 Classification error

We now conduct a study of ��-���’s empirical performance
on standard benchmarks of large-scale linear classification.
For brevity, we display results on four data sets although
we have seen similar results on eight additional ones (see
the supplementary material for more details).

Table 1 displays a summary of the data sets. The COVTYPE
data set (Blackard, 1998) consists of forest cover types in
which the task is to classify class 2 among 7 forest cover
types. DELTA is synthetic data o�ered in the PASCAL
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Figure 2: Large scale linear classification with log loss on
four data sets. Each plot indicates the test error of various
stochastic gradient methods over a single pass of the data.

Large Scale Challenge (Sonnenburg et al., 2008) and we ap-
ply the default processing o�ered by the challenge organiz-
ers. The task in RCV1 is to classify documents belonging
to class CCAT in the text dataset (Lewis et al., 2004), where
we apply the standard preprocessing provided by Bottou
(2012). In the MNIST data set (Le Cun et al., 1998) of
images of handwritten digits, the task is to classify digit 9
against all others.

For ��-��� and ����, we use the learning rate �
n

= ⌘
0

(1+

⌘
0

n)�3/4 prescribed in Xu (2011), where the constant ⌘
0

is
determined through preprocessing on a small subset of the
data. Hyperparameters for other methods are set based on
a computationally intensive grid search over the entire hy-
perparameter space: this includes step sizes for ����-���,
����-����, and �������, and the inner iteration count
for ����-����. For all methods we use L

2

regularization
with parameter � which varies for each data set, and which
is also used in Xu (2011).

The results are shown in Figure 2. We see that ��-���
achieves comparable performance with the tuned proximal
methods ����-���� and ����-���, as well as �������.
Interestingly, ������� exhibits a larger variance in its es-
timate than the proximal methods. This comes from the less
known fact that the learning rate in ������� is a subopti-
mal approximation of the Fisher information, and hence it
is statistically ine�cient.

4.3 Sensitivity analysis

We examine the inherent stability of the aforementioned
procedures by perturbing their hyperparameters. That is,
we perform sensitivity analysis by varying any hyperpa-
rameters that the user must tweak in order to fine tune the
convergence of each procedure. We do so for hyperparam-
eters in ���� (the learning rate), ����-���� (proximal
step size ⌘ and inner iteration m), and ��-��� (the learn-
ing rate).
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Figure 3: Top: Logistic regression on the RCV1 dataset,
performing sensitivity analysis of ��-��� and ���� for
the choice of regularization parameter �. Bottom: linear
SVM on the covtype dataset, performing sensitivity anal-
ysis of ��-��� and ����-����, in which ����-���� has
additional hyperparameters ⌘ according to the step size of
the proximal update and m according to the inner iteration
count.

The results are shown in Figure 3. As we decrease the reg-
ularization parameter, ���� performs increasingly worse.
While it may converge, the test error can be arbitrarily large.
On the other hand, ��-��� always converges and is not af-
fected by regularization. When the regularization parame-
ter is about 1/N , i.e., when � < 1�-6, ���� remains stable
and can compare with ��-���. Similar results hold when
perturbing ⌘ and m in ����-����, as ��-��� does not re-
quire specification of such hyperparameters.
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description type features training set test set �
covtype forest cover type sparse 54 464,809 116,203 10

�6

delta synthetic data dense 500 450,000 50,000 10

�2

rcv1 text data sparse 47,152 781,265 23,149 10

�5

mnist digit image features dense 784 60,000 10,000 10

�3

Table 1: Summary of data sets and the L
2

regularization parameter, following the settings in Xu (2011).

5 Conclusion

We propose a statistical learning procedure, termed ��-���,
and investigate its theoretical and empirical properties. ��-
��� combines simple stochastic proximal steps, also known
as implicit updates, with iterate averaging and larger step-
sizes. The proximal steps allow ��-��� to be significantly
more stable compared to classic ��� procedures, with or
without averaging of the iterates; this stability comes at vir-
tually no computational cost for a large family of machine
learning models. Furthermore, the averaging of the iterates
lead ��-��� to be statistically optimal, i.e., the variance of
the iterate ¯✓

n

of ��-��� achieves the minimum Cramér-Rao
lower bound, under strong convexity. Last but not least, ��-
��� is as simple to implement as classic ���. In compar-
ison, other stochastic proximal procedures, such as ����-
���� or ����-���, require tuning of hyperparameters that
control periodic calculations over the entire dataset, and
possibly storage of the full gradient.
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1 Note

Lemmas 1, 2, 3 and 4, and Corollary 1, were originally derived by Toulis and Airoldi (2014). These
intermediate results (and Theorem 1) provide the necessary foundation to derive Lemma 5 (only in
this supplement) and Theorem 2 on the asymptotic optimality of ¯✓

n

, which is the key result of the
main paper. We fully state these intermediate results here for convenience but we point the reader
to the aforementioned reference for the proofs and for more details on the theory of (non-averaged)
implicit stochastic gradient descent (implicit SGD).

2 Introduction

Consider a random variable ⇠ 2 ⌅, a parameter space ⇥ that is convex and compact, and a loss
function L : ⇥⇥ ⌅ ! R. We wish to solve the following stochastic optimization problem:

✓

?

= argmin

✓2⇥
E (L(✓, ⇠)) , (1)

where the expectation is with respect to ⇠. Define the expected loss,

`(✓) = E (L(✓, ⇠)) , (2)

where L is di�erentiable almost-surely. In this work we study a stochastic approximation procedure
to solve (1) defined through the iterations

✓n = ✓

n�1

� �

n

rL(✓n, ⇠n), ✓

0

2 ⇥, (3)

¯

✓

n

=

1

n

nX

i=1

✓

i

, (4)

where {⇠
1

, ⇠

2

, . . .} are i.i.d. realizations of ⇠, and rL(✓, ⇠

n

) is the gradient of the loss function with
respect to ✓ given realized value ⇠

n

. The sequence {�
n

} is a non-increasing sequence of positive
real numbers. We will refer to procedure defined by (3) and (4) as averaged implicit stochastic

1



gradient descent, or averaged implicit ��� (��-���) for short. Procedure ��-��� combines two
ideas, namely an implicit update in Eq. (3) as ✓

n

appears on both sides of the update, and averaging
of the iterates ✓

n

in Eq. (4).

3 Notation and assumptions

Let F
n

= {✓
0

, ⇠

1

, ⇠

2

, . . . , ⇠

n

} denote the filtration that process ✓
n

(3) is adapted to. The norm || · ||
will denote the L

2

norm. The symbol , indicates a definition, and the symbol def
= denotes “equal

by definition”. For example, x , y defines x as equal to known variable y, whereas x def
= y denotes

that the value of x is equal to the value of y, by definition. We will not use this formalism when
defining constants. For two positive sequences a

n

, b

n

, we write b

n

= O(a

n

) if there exists a fixed
c > 0 such that b

n

 ca

n

, for all n; also, b
n

= o(a

n

) if b
n

/a

n

! 0. When a positive scalar sequence
a

n

is monotonically decreasing to zero, we write a
n

# 0. Similarly, for a sequence X
n

of vectors or
matrices, X

n

= O(a

n

) denotes that ||X
n

|| = O(a

n

), and X

n

= o(a

n

) denotes that ||X
n

|| = o(a

n

).
For two matrices A,B, A � B denotes that B�A is nonnegative-definite; tr(A) denotes the trace
of A.

We now introduce the main assumptions pertaining to the theory of this paper.
Assumption 1. The loss function L(✓, ⇠) is almost-surely di�erentiable. The random vector ⇠ can
be decomposed as ⇠ = (x, y), x 2 Rp

, y 2 Rd, such that

L(✓, ⇠) ⌘ L(x

|
✓, y). (5)

Assumption 2. The learning rate sequence {�
n

} is defined as �

n

= �

1

n

�� , where �

1

> 0 and
� 2 (1/2, 1].
Assumption 3 (Lipschitz conditions). For all ✓

1

, ✓

2

2 ⇥, a combination of the following conditions
is satisfied almost-surely:

(a) The loss function L is Lipschitz with parameter �
0

, i.e.,

|L(✓
1

, ⇠)� L(✓

2

, ⇠)|  �

0

||✓
1

� ✓

2

||,

(b) The map rL is Lipschitz with parameter �
1

, i.e.,

||rL(✓

1

, ⇠)�rL(✓

2

, ⇠)||  �

1

||✓
1

� ✓

2

||,

(c) The map r2

L is Lipschitz with parameter �
2

, i.e.,

||r2

L(✓

1

, ⇠)�r2

L(✓

2

, ⇠)||  �

2

||✓
1

� ✓

2

||.
Assumption 4. The observed Fisher information matrix, ˆI(✓) , r2

L(✓, ⇠), has non-vanishing
trace, i.e., there exists � > 0 such that tr(ˆI(✓)) � �, almost-surely, for all ✓ 2 ⇥. The expected
Fisher information matrix, I(✓) , E

⇣
ˆI(✓)

⌘
, has minimum eigenvalue 0 < �

f

 �, for all ✓ 2 ⇥.
Assumption 5. The zero-mean random variable W

✓

, rL(✓, ⇠) � r`(✓) is square-integrable,
such that, for a fixed positive-definite ⌃,

E
�
W

✓?W
|
✓?

� � ⌃.
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4 Proof of Lemma 1

Definition 1. Suppose that Assumption 1 holds. For observation ⇠ = (x, y), the first derivative
with respect to the natural parameter x|

✓ is denoted by L0
(✓, ⇠), and is defined as

L

0
(✓, ⇠) , @L(✓, ⇠)

@(x

|
✓)

def
=

@L(x

|
✓, y)

@(x

|
✓)

. (6)

Similarly, L00
(⇠, ✓) , @L

0
(✓,⇠)

@(x

|
✓)

.

Lemma 1. Suppose that Assumption 1 holds, and consider functionsL0
, L

00 from Definition 1. Then,
almost-surely,

rL(✓

n

, ⇠

n

) = s

n

rL(✓

n�1

, ⇠

n

); (7)

the scalar s
n

satisfies the fixed-point equation,

s

n



n�1

= L

0
(✓

n�1

� s

n

�

n



n�1

x

n

, ⇠

n

) , (8)

where 
n�1

, L

0
(✓

n�1

, ⇠

n

). Moreover, if L00
(✓, ⇠) � 0 almost-surely for all ✓ 2 ⇥, then

s

n

2
(
[

n�1

, 0) if 
n�1

< 0,

[0,

n�1

] otherwise.

Proof. See Toulis and Airoldi (2014, Theorem 4.1).

5 Proof of Theorem 1

5.1 Useful lemmas

In this section, we will present the intermediate lemmas on recursions that will be useful for the
non-asymptotic analysis of the implicit procedures.
Lemma 2. Consider a sequence b

n

such that b
n

# 0 and
P1

i=1

b

i

= 1. Then, there exists a positive
constant K > 0, such that

nY

i=1

1

1 + b

i

 exp(�K

nX

i=1

b

i

). (9)

Proof. See Toulis and Airoldi (2014, Lemma B.1).
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Lemma 3. Consider scalar sequences a

n

# 0, b

n

# 0, and c

n

# 0 such that, a
n

= o(b

n

), and
A , P1

i=1

a

i

< 1. Suppose there exists n0 such that c
n

/b

n

< 1 for all n > n

0. Define,

�

n

, 1

a

n

(a

n�1

/b

n�1

� a

n

/b

n

) and ⇣

n

, c

n

b

n�1

a

n�1

a

n

, (10)

and suppose that �
n

# 0 and ⇣

n

# 0. Fix n

0

> 0 such that �
n

+ ⇣

n

< 1 and (1 + c

n

)/(1 + b

n

) < 1,
for all n � n

0

.

Consider a positive sequence y
n

> 0 that satisfies the recursive inequality,

y

n

 1 + c

n

1 + b

n

y

n�1

+ a

n

. (11)

Then, for every n > 0,

y

n

 K

0

a

n

b

n

+Q

n

1

y

0

+Q

n

n0+1

(1 + c

1

)

n0
A, (12)

where K

0

= (1 + b

1

) (1� �

n0 � ⇣

n0)
�1, and Q

n

i

=

Q
n

j=i

(1 + c

i

)/(1 + b

i

), such that Qn

i

= 1 if
n < i, by definition.

Proof. See Toulis and Airoldi (2014, Lemma B.2).

Corollary 1. In Lemma 3 assume a

n

= a

1

n

�↵ and b

n

= b

1

n

�� , and c

n

= 0, where a

1

, b

1

, � > 0

and max{�, 1} < ↵ < 1 + �, and � 6= 1. Then,

y

n

 2

a

1

(1 + b

1

)

b

1

n

�↵+�

+ exp(� log(1 + b

1

)n

1��

)[y

0

+ (1 + b

1

)

n0
A], (13)

where n
0

> 0 and A =

P
i

a

i

< 1. If � = 1 then the above inequality holds by replacing the term
n

1�� with log n.

Proof. See Toulis and Airoldi (2014, Corollary B.1).

Lemma 4. Suppose Assumptions 1, 3(a), and 4 hold. Then, almost surely,

s

n

� 1

1 + �

n

�

, (14)

||✓
n

� ✓

n�1

||2  4�

2

0

�

2

n

, (15)

where s
n

is defined in Lemma 1, and ✓

n

is the nth iterate of implicit SGD (3).

Proof. See Toulis and Airoldi (2014, Lemma B.3).

Theorem 1. Suppose that Assumptions 1, 2, 3(a), and 4 hold. Define �

n

, E (||✓
n

� ✓

?

||2), and
constants �2

= 4�

2

0

P
�

2

i

< 1, ✏ = (1+�

1

(���

f

))

�1, and � = 1+�

1

�

f

✏. Also let ⇢
�

(n) = n

1��

if � 6= 1 and ⇢

�

(n) = log n if � = 1. Then, there exists constant n
0

> 0 such that, for all n > 0,

�

n

(8�

2

0

�

1

�/�

f

✏)n

��

+ e

� log �·⇢�(n)
[�

0

+ �

n0
�

2

].
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Proof. See Toulis and Airoldi (2014, Theorem 3.1).

Remarks. #1. Assuming Lipschitz continuity of the gradient rL instead of function L, i.e.,
Assumption 3(b) over Assumption 3(a) would not alter the main result of Theorem 1 about the
O(n

��

) rate of the mean-squared error. Assuming Lipschitz continuity with constant �
1

of rL

and boundedness of E (||rL(✓

?

, ⇠

n

)||2)  �

2, as it is typical in the literature, would simply add a
term �

2

n

�

2

1

E (||✓
n

� ✓

?

||2)+�

2

n

�

2 in the corresponding recursive inequality. Specifically, by Lemma
1, s

n

 1, and thus

E
�||rL(✓

n

, ⇠

n

)||2� = E
�
s

2

n

||rL(✓

n�1

, ⇠

n

)||2�  E
�||rL(✓

n�1

, ⇠

n

)||2�

= E
�||rL(✓

n�1

, ⇠

n

)�rL(✓

?

, ⇠

n

) +rL(✓

?

, ⇠

n

)||2�

 �

2

1

E
�||✓

n�1

� ✓

?

||2�+ �

2

n

E
�||rL(✓

?

, ⇠

n

)||2�

 �

2

1

E
�||✓

n�1

� ✓

?

||2�+ �

2

n

�

2

. (16)

The recursion for the implicit errors would then be

E
�||✓

n

� ✓

?

||2�  (

1

1 + �

n

�

f

✏

+ �

2

1

�

2

n

)E
�||✓

n�1

� ✓

?

||2�+ �

2

n

�

2

,

which also implies the O(n

��

) convergence rate. However, it is an open problem whether it is
possible to derive a nice stability property for implicit SGD under Assumption 3(b) similar to the
result of Theorem 1 under Assumption 3(a).

Remarks. #2. An assumption of almost-sure convexity can simplify the analysis significantly. For
example, similar to the assumption of Ryu and Boyd (2014), assume that L(✓, ⇠) is convex almost
surely such that

(✓

n

� ✓

?

)

|rL(✓

n

, ⇠

n

) � µ

n

2

||✓
n

� ✓

?

||2, (17)

where µ
n

� 0 and E (µ

n

) = µ > 0. Then,

✓

n

+ 2�

n

rL(✓

n

, ⇠

n

) = ✓

n�1

[by definition of implicit SGD (3)]

||✓
n

� ✓

?

||2 + 2�

n

(✓

n

� ✓

?

)

|rL(✓

n

, ⇠

n

)  ||✓
n�1

� ✓

?

||2.
(1 + �

n

µ

n

)||✓
n

� ✓

?

||2  ||✓
n�1

� ✓

?

||2.
E
�||✓

n

� ✓

?

||2�  1

1 + �

n

µ

E
�||✓

n�1

� ✓

?

||2�+ SD(1 + �

n

µ

n

)SD(||✓
n

� ✓

?

||2),
(18)

where the last inequality follows from the identity E (XY ) � E (X)E (Y )�SD(X)SD(Y ). How-
ever, SD(1 + �

n

µ

n

) = O(�

n

), and assuming bounded ✓

n

we get

E
�||✓

n

� ✓

?

||2�  1

1 + �

n

µ

E
�||✓

n�1

� ✓

?

||2�+O(�

n

), (19)

which indicates a fast convergence towards ✓
?

. It is also possible to work with the recursion

||✓
n

� ✓

?

||2  1

1 + �

n

µ

n

||✓
n�1

� ✓

?

||2, (20)

and then use a stochastic version of Lemma 3 although the analysis would be more complex in this
case.

5



6 Proof of Theorem 2

In this section, we prove Theorem 2. To do so, we need bounds for E (||✓
n

� ✓

?

||2), which are
available through Theorem 1, but also bounds for E (||✓

n

� ✓

?

||4), which are established in the
following lemma.
Lemma 5. Suppose that Assumptions 1, 2, 3(a), and 4 hold. For a constant K

3

> 0, define ⇣

n

,
E (||✓

n

� ✓

?

||4), and constants �3 , K

3

P
�

3

i

< 1, ✏ , (1 + �

1

(�� �

f

))

�1, and � , 1 + �

1

�

f

✏.
Then, there exists constant n

0

such that, for all n > 0,

⇣

n

(2K

3

�

2

1

�/�

f

✏)n

�2�

+ e

� log �·⇢�(n)
[⇣

0

+ �

n0
�

3

].

Proof. Define W
n

, s

n

(✓

n�1

� ✓

?

)

|rL(✓

n�1

, ⇠

n

) for compactness, and proceed as folllows,

||✓
n

� ✓

?

||2 = ||✓
n�1

� ✓

?

||2 � 2�

n

s

n

(✓

n�1

� ✓

?

)

|rL(✓

n�1

, ⇠

n

) + �

2

n

||rL(✓

n

, ⇠

n

)||2
||✓

n

� ✓

?

||2 = ||✓
n�1

� ✓

?

||2 � 2�

n

W

n

+ �

2

n

||rL(✓

n

, ⇠

n

)||2 [by definition]

||✓
n

� ✓

?

||2  ||✓
n�1

� ✓

?

||2 � 2�

n

W

n

+ 4�

2

0

�

2

n

,

||✓
n

� ✓

?

||4  ||✓
n�1

� ✓

?

||4 + 4�

2

n

W

2

n

+ 16�

4

0

�

4

n

� 2�

n

||✓
n�1

� ✓

?

||2W
n

+ 4�

2

0

�

2

n

||✓
n�1

� ✓

?

||2 � 8�

2

0

�

3

n

W

n

. (21)

By Lemma 4 we have

E (W

n

| F
n�1

) �
�

f

2(1 + �

n

�)

||✓
n�1

� ✓

?

||2. (22)

Furthermore,

E
�
W

2

n

��F
n�1

)

def
= E

�
[s

n

(✓

n�1

� ✓

?

)

|rL(✓

n�1

, ⇠

n

)]

2

��F
n�1

)

def
= E

�
[(✓

n�1

� ✓

?

)

|rL(✓

n

, ⇠

n

)]

2

��F
n�1

) [by Lemma 1]

 ||✓
n�1

� ✓

?

||2E �||rL(✓

n

, ⇠

n

)||2��F
n�1

) [by Cauchy-Schwartz inequality]

 4�

2

0

||✓
n�1

� ✓

?

||2 [by Lemma 4] (23)

Define B
n

, E (||✓
n

� ✓

?

||2) for notational brevity. We use results (22) and (23) to get

E
�||✓

n

� ✓

?

||4� 
✓
1�

�

n

�

f

1 + �

n

�

◆
E
�||✓

n�1

� ✓

?

||4�+ 4�

2

0

�

2

n

(5�
�

n

�

f

1 + �

n

�

)B

n�1

+ 16�

4

0

�

4

n

E
�||✓

n

� ✓

?

||4� 
✓
1�

�

n

�

f

1 + �

n

�

◆
E
�||✓

n�1

� ✓

?

||4�+ 20�

2

0

�

2

n

B

n�1

+ 16�

4

0

�

4

n

E
�||✓

n

� ✓

?

||4�  1

1 + �

n

�

f

✏

E
�||✓

n�1

� ✓

?

||4�+ 20�

2

0

�

2

n

B

n�1

+ 16�

4

0

�

4

n

. [by Assumption 4]

E
�||✓

n

� ✓

?

||4�  1

1 + �

n

�

f

✏

E
�||✓

n�1

� ✓

?

||4�+K

0

�

3

n

+ e

� log �·n1��
K

1

+K

2

�

4

n

, [by Theorem 1]

(24)
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where � = (1 + �

1

(� � �

f

))

�1 and �

2

= 4�

2

0

P
�

2

i

, (as in Theorem 1), K
0

, 160�

4

0

�/�

f

,
K

1

, 20�

2

0

(E (||✓
0

� ✓

?

||2) + �

n0
�

2

), and K

2

, 16�

4

0

, and n

0

is a constant defined in the proof of
Theorem 1.

Now, define

K

3

, K

0

+K

2

�

1

+max{e
� log �·⇢�(n)K1

�

3

n

}, (25)

which exists and is finite. Through simple algebra it is easy to verify that

K

0

�

3

n

+ e

� log �·⇢�(n)
K

1

+K

2

�

4

n

 K

3

�

3

n

, (26)

for all n. Therefore, we can simplify Ineq. (24) as

E
�||✓

n

� ✓

?

||4�  1

1 + �

n

�

f

✏

E
�||✓

n�1

� ✓

?

||4�+K

3

�

3

n

. (27)

We can now apply Corollary 1 with a

n

⌘ K

3

�

3

n

and b

n

⌘ �

n

�

f

✏ to derive the final bounds for
E (||✓

n

� ✓

?

||4).

We now evaluate the mean squared error of the averaged iterates, ¯✓
n

.
Theorem 2. Consider the ��-��� procedure 4 and suppose that Assumptions 1, 2, 3(a), 3(c), 4,
and 5 hold with � < 1. Then,

(E
�||¯✓

n

� ✓

?

||2�)1/2  1p
n

�
trace(r2

`(✓

?

)

�1

⌃r2

`(✓

?

)

�1

)

�
1/2

+

2� + 1

�

f

1/2

�

1

(8�

2

0

�

1

�/�

f

✏)

1/2

n

�1+�/2

+

2� + 1

�

f

1/2

n�

n

[�

0

+ �

n0,1
�

2

]

1/2

e

� log �·n1��
/2

+

�

2

2�

f

1/2

(2K

3

�

2

1

�/�

f

✏)

1/2

n

��

+

�

2

2n�

f

1/2

[⇣

0

+ �

n0,2
�

3

]

1/2

K

2

(n). (28)

whereK
2

(n) =

P
n

i=1

exp (� log � · i1��

/2), and constants �, ✏, n
0,1

, �

0

,�

2 are defined in Theorem
1 (susbtituting n

0

for n
0,1

), and ⇣

0

, n

0,2

,�

3 are defined in Lemma 5, substituting (n
0

for n
0,2

).

Proof. We leverage a result shown for averaged explicit stochastic gradient descent. In particular,
it has been shown that the squared error for the averaged iterate satisfies:

(E
�||¯✓

n

� ✓

?

||2�)1/2  1p
n

�
trace(r2

`(✓

?

)

�1

⌃r2

`(✓

?

)

�1

)

�
1/2

+

2� + 1

�

f

1/2

n�

n

(E
�||✓

n

� ✓

?

||2�)1/2

+

�

2

2n�

f

1/2

nX

i=1

(E
�||✓

i

� ✓

?

||4�1/2 . (29)
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The proof technique for (29) was first devised by Polyak and Juditsky (1992), but was later refined
by Xu (2011), and Moulines and Bach (2011). In this paper,we follow the formulation of Moulines
and Bach (2011, Theorem 3, page 20); the derivation of Ineq.(29) for the implicit procedure is
identical to the derivation for the explicit one, however the two procedures di�er in the terms that
appear in the bound (29).

All such terms in (29) have been bounded in the previous sections. In particular, we can use The-
orem 1 for E (||✓

n

� ✓

?

||2); we can also use Theorem 2 and the concavity of the square-root to
derive

nX

i=1

(E
�||✓

i

� ✓

?

||4�1/2 
nX

i=1

⇣
(2K

3

�

2

1

�/�

f

✏)

1/2

i

��

+ e

� log �·i1��
/2

[⇣

0

+ �

n0,2
�

3

]

1/2

⌘

 (2K

3

�

2

1

�/�

f

✏)

1/2

n

1��

+K

2

(n)[⇣

0

+ �

n0,2
�

3

]

1/2

, (30)

whereK
2

(n) =

P
n

i=1

exp

�� log �

2

i

1��

�
, ⇣

0

= E (||✓
0

� ✓

?

||4), and�3

, n

0,2

are defined in Lemma 5,
substituting n

0

for n
0,2

. Similarly, using Theorem 1,

(E
�||✓

n

� ✓

?

||2�1/2  (8�

2

0

�

1

�/�

f

✏)

1/2

n

��/2

+ e

� log �·n1��
/2

[�

0

+ �

n0,1
�

2

]

1/2

,

where �

0

= E (||✓
n

� ✓

?

||2), and n

0,1

,�

2 are defined in Theorem 1, substituing n

0,1

for n
0

. These
two bounds can be used in Ineq.(29) and thus yield the result of Theorem 2.

7 Data sets used in experiments

description type features training set test set �

covtype forest cover type sparse 54 464,809 116,203 10

�6

delta synthetic data dense 500 450,000 50,000 10

�2

rcv1 text data sparse 47,152 781,265 23,149 10

�5

mnist digit image features dense 784 60,000 10,000 10

�3

sido molecular activity dense 4,932 10,142 2,536 10

�3

alpha synthetic data dense 500 400k 50k 10

�5

beta synthetic data dense 500 400k 50k 10

�4

gamma synthetic data dense 500 400k 50k 10

�3

epsilon synthetic data dense 2000 400k 50k 10

�5

zeta synthetic data dense 2000 400k 50k 10

�5

fd character image dense 900 1000k 470k 10

�5

ocr character image dense 1156 1000k 500k 10

�5

dna DNA sequence sparse 800 1000k 1000k 10

�3

Table 1: Summary of data sets and the L
2

regularization parameter � used

Table 1 includes a full summary of all data sets considered in our experiments. The majority of
regularization parameters are set according to Xu (2011).
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