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Results

Motivation

Massive Model-Parallelism
(and/or data-parallelism) 
Made Easier

● Ability to train GIANT multi-billion/trillion-parameter 
models which do not fit on one processor.

● Ability to process giant examples
(spatial/temporal splitting of images/video, etc.)

● Low latency by splitting computation for one example 
across multiple processors.

● Traditional MIMD approaches to model-parallelism are:
○ Tricky to design
○ Create giant cumbersome graphs
○ Are prone to bottlenecks

● Trained Transformer models with up to 5B parameters on 
up to 512 TPU cores.

● >50% MXU utilization 
(6PFLOPS/possible 11.5 PFLOP/s)

● Describe the overall computation in a TensorFlow-like 
language with named tensor-dimensions.

● Describe your physical cores as n-dimensional array of 
processors by specifying a “mesh”.

● Describe which tensor-dimensions should be split across 
which dimensions of the mesh of processors.

● You’re Done - Mesh-TensorFlow compiles your graph into 
Single-Program-Multiple-Data (SPMD) TensorFlow code 
plus collective communication primitives.

Example Perceptron

X:  [b, dx]

H:  [b, dh]

Y:  [b, dy]

W: [dx, dh]

V: [dh, dy]

Y = (H = Relu(XW))V

# x.shape == [(“b”: 4096), (“d_x”: 1024)]
w = mtf.get_variable([(“d_x”: 1024), (“d_h”: 8192)]
v = mtf.get_variable([(“d_h”: 8192), (“d_y”: 1024)]
h = mtf.einsum([x, w], [(“b”: 4096), (“d_h”: 8192)])
h = mtf.relu(h)
y = mtf.einsum([h, v], [(“b”: 4096), (“d_y”: 8192)])
...

X:  [b, dx]

H:  [b, dh]

Y:  [b, dy]

W: [dx, dh]

V: [dh, dy]

Splitb

Replicated

Splitb

Replicated

Splitb

TPU:0

H[:b/2,:] = Relu(X[:b/2,:]W)

X[:b/2,:]

W

V

Y[:b/2,:] = H[:b/2,:]V

TPU:1

H[b/2:,:] = Relu(X[b/2:,:]W)

X[b/2:,:]

W

V

Y[b/2:,:] = H[b/2:,:]V

… with data-parallelism 
(split “b” dimension)

mesh_shape = [(“all”, 2)]
layout = [(“b”, “all”)]

… with model-parallelism 
(split “dh” dimension)

mesh_shape = [(“all”, 2)]
layout = [(“d_h”, “all”)]

X:  [b, dx]

H:  [b, dh]

Y:  [b, dy]

W: [dx, dh]

V: [dh, dy]

Replicated

Split (dh)

Split (dh)

Split (dh)

Replicated

TPU:0

H[:,:dh/2] = Relu(XW[:,:dh/2])

X

W[:,:dh/2]

V[:dh/2,:]

Y = Y0 + Y1

Y0 = H[:,:dh/2]V[:dh/2,:]

TPU:1

H[:,dh/2:] = Relu(XW[:,dh/2:])

X

W[:,dh/2:]

V[dh/2:,:]

Y = Y0 + Y1

Y1 = H[:,dh/2:]V[dh/2:,:]

… data+model parallelism on a 3d mesh of 
512 processors 

X:  [b, dx]

H:  [b, dh]

Y:  [b, dy]

W: [dx, dh]

V: [dh, dy]

Use a 3-dimensional mesh of processors with dimensions 
[m0, m1, m2].

● Split “b” across mesh dimension m0
● Split “dh” across mesh dimension m1
● Split “dx”, “dy” across mesh dimension m2

● Each matrix is tiled across two mesh dimensions and 
replicated across the third.

● Each matmul consists of local matmuls, followed by 
allreduce across one mesh dimension.

mesh_shape = [(“m_0”, 8), (“m_1”, 8), (“m_2”, 8)]
layout = [(“b”, “m0”), (“d_h”, “m_1”), (“d_x”, “m_2”), (“d_y”, “m_2”)]

● Mesh-TF Transformer Model

● Transformer models working in MeshTF

● Layouts for Transformer model
layout_data_parallel=”batch:m0”

layout_model_parallel=”vocab:m0,heads:m0,d_ff:m0”

layout_dp_mp=”batch:m0,vocab:m1,heads:m1,d_ff:m1”

Status
● Code is Open-Source on github - please contribute.

https://github.com/tensorflow/mesh/tree/master/mesh_tensor
flow

● Implementations to produce SPMD code for TPU or MIMD 
code for multi-CPU/GPU.

● Integrated on Google Cloud TPU along with examples like the 
Transformer.

https://github.com/tensorflow/mesh/tree/master/mesh_tensorflow
https://github.com/tensorflow/mesh/tree/master/mesh_tensorflow

