
Confidential & Proprietary

Mesh-TensorFlow: Deep Learning for SuperComputers
Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool,

Peter Hawkins, HyoukJoong Lee, Mingsheng Hong,Cliff Young, Ryan Sepassi, Blake Hechtman, Google AI

Results

Motivation

Massive Model-Parallelism
(and/or data-parallelism)
Made Easier

● Ability to train GIANT multi-billion/trillion-parameter
models which do not fit on one processor.

● Ability to process giant examples
(spatial/temporal splitting of images/video, etc.)

● Low latency by splitting computation for one example
across multiple processors.

● Traditional MIMD approaches to model-parallelism are:
○ Tricky to design
○ Create giant cumbersome graphs
○ Are prone to bottlenecks

● Trained Transformer models with up to 5B parameters on
up to 512 TPU cores.

● >50% MXU utilization
(6PFLOPS/possible 11.5 PFLOP/s)

● Describe the overall computation in a TensorFlow-like
language with named tensor-dimensions.

● Describe your physical cores as n-dimensional array of
processors by specifying a “mesh”.

● Describe which tensor-dimensions should be split across
which dimensions of the mesh of processors.

● You’re Done - Mesh-TensorFlow compiles your graph into
Single-Program-Multiple-Data (SPMD) TensorFlow code
plus collective communication primitives.

Example Perceptron

X: [b, dx]

H: [b, dh]

Y: [b, dy]

W: [dx, dh]

V: [dh, dy]

Y = (H = Relu(XW))V

x.shape == [(“b”: 4096), (“d_x”: 1024)]
w = mtf.get_variable([(“d_x”: 1024), (“d_h”: 8192)]
v = mtf.get_variable([(“d_h”: 8192), (“d_y”: 1024)]
h = mtf.einsum([x, w], [(“b”: 4096), (“d_h”: 8192)])
h = mtf.relu(h)
y = mtf.einsum([h, v], [(“b”: 4096), (“d_y”: 8192)])
...

X: [b, dx]

H: [b, dh]

Y: [b, dy]

W: [dx, dh]

V: [dh, dy]

Splitb

Replicated

Splitb

Replicated

Splitb

TPU:0

H[:b/2,:] = Relu(X[:b/2,:]W)

X[:b/2,:]

W

V

Y[:b/2,:] = H[:b/2,:]V

TPU:1

H[b/2:,:] = Relu(X[b/2:,:]W)

X[b/2:,:]

W

V

Y[b/2:,:] = H[b/2:,:]V

… with data-parallelism
(split “b” dimension)

mesh_shape = [(“all”, 2)]
layout = [(“b”, “all”)]

… with model-parallelism
(split “dh” dimension)

mesh_shape = [(“all”, 2)]
layout = [(“d_h”, “all”)]

X: [b, dx]

H: [b, dh]

Y: [b, dy]

W: [dx, dh]

V: [dh, dy]

Replicated

Split (dh)

Split (dh)

Split (dh)

Replicated

TPU:0

H[:,:dh/2] = Relu(XW[:,:dh/2])

X

W[:,:dh/2]

V[:dh/2,:]

Y = Y0 + Y1

Y0 = H[:,:dh/2]V[:dh/2,:]

TPU:1

H[:,dh/2:] = Relu(XW[:,dh/2:])

X

W[:,dh/2:]

V[dh/2:,:]

Y = Y0 + Y1

Y1 = H[:,dh/2:]V[dh/2:,:]

… data+model parallelism on a 3d mesh of
512 processors

X: [b, dx]

H: [b, dh]

Y: [b, dy]

W: [dx, dh]

V: [dh, dy]

Use a 3-dimensional mesh of processors with dimensions
[m0, m1, m2].

● Split “b” across mesh dimension m0
● Split “dh” across mesh dimension m1
● Split “dx”, “dy” across mesh dimension m2

● Each matrix is tiled across two mesh dimensions and
replicated across the third.

● Each matmul consists of local matmuls, followed by
allreduce across one mesh dimension.

mesh_shape = [(“m_0”, 8), (“m_1”, 8), (“m_2”, 8)]
layout = [(“b”, “m0”), (“d_h”, “m_1”), (“d_x”, “m_2”), (“d_y”, “m_2”)]

● Mesh-TF Transformer Model

● Transformer models working in MeshTF

● Layouts for Transformer model
layout_data_parallel=”batch:m0”

layout_model_parallel=”vocab:m0,heads:m0,d_ff:m0”

layout_dp_mp=”batch:m0,vocab:m1,heads:m1,d_ff:m1”

Status
● Code is Open-Source on github - please contribute.

https://github.com/tensorflow/mesh/tree/master/mesh_tensor
flow

● Implementations to produce SPMD code for TPU or MIMD
code for multi-CPU/GPU.

● Integrated on Google Cloud TPU along with examples like the
Transformer.

https://github.com/tensorflow/mesh/tree/master/mesh_tensorflow
https://github.com/tensorflow/mesh/tree/master/mesh_tensorflow

