All variational inference requires statistical and computational
tradeoffs. How do we formalize these tradeoffs?

We use operators, or functions of functions, to design variational
objectives. Operators enable us to analyze these tradeoffs.

For example, we demonstrate variational programs—a rich class of
posterior approximations that does not require a tractable density.

Variational Objectives

Variational inference is an umbrella term for algorithms that cast
Bayesian inference as optimization.

We want to compute the posterior p(z|x), for latent variables
z=(z,,...,2;) and data x.

The evidence lower bound (ELBO) is the most popular objective,
Eq(z)[lng(X, Z) o lOg q(Z)]
Optimizing the ELBO imposes specific properties on q € £.

We aim to study objectives which trade off different properties.

Operator Variational Objectives

We define a new class of variational objectives.
There are three ingredients that form an operator objective:

An operator OP'? that depends on p(z|x) and q(z).
A family of test functions f € &, where each f(z) : R — R¢.
A distance function t(a) : R — [0, 00).

Sup t( ]Eq(z)[(Op,qf)(Z)] )
fes

It is the worst-case expected value among all functions f € &.
To use these objectives, we impose two conditions:

Closeness. Its minimum is achieved at the posterior,

Eoz 10l (OPFf)(z)] =0 for all f € Z.
Tractability. The operator OP*9—originally in terms of p(z | x) and
g(z)—can be written in terms of p(x,z) and q(z).

We parameterize q(z; A) with standard approaches.
We parameterize f(z; 6 ) with a neural network.
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Example: Langevin-Stein Operator Objective

For f € &, the operator is
(0°f)(z) = V,logp(x,2) f(2) + V'f, V'f=Y V. f(2)

With distance function t(a) = a?, the objective is

sup ( Ey,»)[V,logp(x,2) 'f(z)
fez

v 'f1)>

Example: A Discrete Operator Objective

Langevin-Stein operators have a discrete analog. For example, consider a one-
dimensional latent variable with support z € {0,...,c}. Then

(00 e ~F @+ DR+ LX) —f@p(a,%)

p(z,x)
where f is a function such that f(0) = 0.

Example: KL Divergence as an Operator Objective

The operator is (O”1f)(z) =logq(z) —logp(x,z) Vf e Z.
With distance function t(a) = a, the objective is

IEq(z)l:log CI(Z) o lng(X, Z)]

Operator Variational Inference

The operator objective is

m/lin mQaX t( E,[(OP1fg)(2)])

Fix t(a) = a*; the case of t(a) = a easily applies.
Gradient with respect to A. (Variational approximation)

VZy =2 E,[(O™fy)(Z2)] V,E,[(O™fy)(Z)]
Gradient with respect to 6. (Test function)
Vo, =2 E;[(0™fy)(2)] E)[ VO™ fy(2)]

We use black box gradients with two sets of Monte Carlo estimates.

Characterizing Objectives: Variational Programs

The family g € £ is typically limited by a tractable density:.
We design operators that do not depend on g, OP% = OP, such as

sup (Eq[V.logp(x,2) ' f(z) + V'f] )%

Variational programs enable a larger class of approximating families.

For example, consider a generative program of latent variables,
€ ~Normal(0,1), z=G(e;A),

where G is a neural network. The program is differentiable and generates samples
for z. Its density does not have to be tractable.

Experiments: 1-D Mixture of Gaussians

We posit the variational program z ~ q:

1. Draw €, €’ ~ Normal(0, 1).
2. If e’ >0, return Gy(e; A;); else if €’ < 0, return G,(€; A,).
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Langevin-Stein with a Gaussian family fits a mode. Langevin-Stein with a varia-
tional program approaches the truth.

Experiments: Binarized MNIST

We model binarized MNIST, x, € {0, 1}°**%%, with
z. ~ Normal(0, 1),
X, ~ Bernoulli(logistic(zIW + b)),
where z, has latent dimension 10 and with parameters {W, b}.
We posit the variational program z ~ q:
€ ~ Normal(0,I)
h, = ReLU(W! ' € + b)
h; = ReLU(W! 'hy + b?)
z=W?"h; +b?,
with parameters {W¢, b, Wi, bd, Wi, bl}.

At test time, we throw away half the pixels and impute them using different
objectives. We compare the log-likelihood of the completed image.

Inference method Completed data log-likelihood

Mean-field Gaussian + KL(q||p) -59.3
Mean-field Gaussian + LS -75.3
Variational Program + LS -58.9

The variational program performs better than KL without directly optimizing for
likelihoods.
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€ ~ Normal(0, 1)



