

Summary

- All variational inference requires statistical and computational tradeoffs. How do we formalize these tradeoffs?
- We use *operators*, or functions of functions, to design variational objectives. Operators enable us to analyze these tradeoffs.
- For example, we demonstrate *variational programs*—a rich class of posterior approximations that does not require a tractable density.

Variational Objectives

- Variational inference is an umbrella term for algorithms that cast Bayesian inference as optimization.
- We want to compute the posterior $p(\mathbf{z} | \mathbf{x})$, for latent variables $\mathbf{z} = (\mathbf{z}_1, \dots, \mathbf{z}_d)$ and data \mathbf{x} .
- The evidence lower bound (ELBO) is the most popular objective,

 $\mathbb{E}_{q(\mathbf{z})}[\log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z})].$

- Optimizing the ELBO imposes specific properties on $q \in \mathcal{Q}$.
- We aim to study objectives which trade off different properties.

Operator Variational Objectives

- We define a new class of variational objectives.
- There are three ingredients that form an *operator objective*:
- An operator $O^{p,q}$ that depends on $p(\mathbf{z} | \mathbf{x})$ and $q(\mathbf{z})$.
- A family of test functions $f \in \mathscr{F}$, where each $f(\mathbf{z}) : \mathbb{R}^d \to \mathbb{R}^d$.
- A distance function $t(a) : \mathbb{R} \to [0, \infty)$. 3.

$$\sup_{f \in \mathscr{F}} t(\mathbb{E}_{q(\mathbf{z})}[(O^{p,q}f)(\mathbf{z})])$$

- It is the worst-case expected value among all functions $f \in \mathscr{F}$.
- To use these objectives, we impose two conditions:
- *Closeness*. Its minimum is achieved at the posterior,

$$\mathbb{E}_{p(\mathbf{z} \mid \mathbf{x})}[(O^{p,p}f)(\mathbf{z})] = 0 \text{ for all } f \in \mathscr{F}.$$

- *Tractability*. The operator $O^{p,q}$ —originally in terms of $p(\mathbf{z} | \mathbf{x})$ and 2. $q(\mathbf{z})$ —can be written in terms of $p(\mathbf{x}, \mathbf{z})$ and $q(\mathbf{z})$.
- We parameterize $q(\mathbf{z}; \lambda)$ with standard approaches.
- We parameterize $f(\mathbf{z}; \theta)$ with a neural network.

Operator Variational Inference

Rajesh Ranganath[†], Jaan Altosaar[†], Dustin Tran[‡], David Blei[‡]

[†]Princeton University, [‡]Columbia University

Example: Langevin-Stein Operator Objective

For $f \in \mathscr{F}$, the operator is

 $(O^p f)(\mathbf{z}) = \nabla_z \log p(\mathbf{x}, \mathbf{z})^\top f(\mathbf{z}) + \nabla^\top f, \quad \nabla^\top f = \sum_{i=1}^d \nabla_{z_i} f(\mathbf{z}).$

With distance function $t(a) = a^2$, the objective is $\sup_{f \in \mathscr{F}} (\mathbb{E}_{q(\mathbf{z})}[\nabla_z \log p(\mathbf{x}, \mathbf{z})^{\mathsf{T}} f(\mathbf{z}) + \nabla^{\mathsf{T}} f])^2.$

Example: A Discrete Operator Objective

Langevin-Stein operators have a discrete analog. For example, consider a onedimensional latent variable with support $z \in \{0, ..., c\}$. Then $(O^p f)(z) = \frac{f(z+1)p(z+1,\mathbf{x}) - f(z)p(z,\mathbf{x})}{z}.$

where *f* is a function such that f(0) = 0.

Example: KL Divergence as an Operator Objective

The operator is $(O^{p,q}f)(z) = \log q(z) - \log p(x, z) \quad \forall f \in \mathscr{F}.$ With distance function t(a) = a, the objective is $\mathbb{E}_{q(\mathbf{z})}[\log q(\mathbf{z}) - \log p(\mathbf{x}, \mathbf{z})].$

Operator Variational Inference

The operator objective is

 $\min_{\lambda} \max_{\theta} t(\mathbb{E}_{\lambda}[(O^{p,q}f_{\theta})(z)])$

Fix $t(a) = a^2$; the case of t(a) = a easily applies. **Gradient with respect to** λ **.** (Variational approximation) $\nabla_{\lambda} \mathscr{L}_{\theta} = 2 \mathbb{E}_{\lambda} [(O^{p,q} f_{\theta})(Z)] \nabla_{\lambda} \mathbb{E}_{\lambda} [(O^{p,q} f_{\theta})(Z)]$

Gradient with respect to θ **.** (Test function)

 $\nabla_{\theta} \mathscr{L}_{\lambda} = 2 \mathbb{E}_{\lambda} [(O^{p,q} f_{\theta})(z)] \mathbb{E}_{\lambda} [\nabla_{\theta} O^{p,q} f_{\theta}(z)]$

We use black box gradients with two sets of Monte Carlo estimates.

Characterizing Objectives: Variational Programs

The family $q \in \mathcal{Q}$ is typically limited by a tractable density. We design operators that do not depend on q, $O^{p,q} = O^p$, such as $\sup_{f \in \mathscr{F}} (\mathbb{E}_{q(\mathbf{z})}[\nabla_z \log p(\mathbf{x}, \mathbf{z})^{\mathsf{T}} f(\mathbf{z}) + \nabla^{\mathsf{T}} f])^2.$

Variational programs enable a larger class of approximating families.

For example, consider a generative program of latent variables, $\epsilon \sim \text{Normal}(0, 1), \quad \mathbf{z} = G(\epsilon; \lambda),$

where *G* is a neural network. The program is differentiable and generates samples for **z**. Its density does not have to be tractable.

Experiments: 1-D Mixture of Gaussians

Variational Program Truth Value of Latent Variable z $\epsilon \sim \text{Normal}(0, I)$ $\mathbf{h}_0 = \operatorname{ReLU}(\mathbf{W}_0^{q^{\top}} \boldsymbol{\epsilon} + \mathbf{b}_0^{q})$ $\mathbf{h}_1 = \operatorname{ReLU}(\mathbf{W}_1^{q^{\top}}\mathbf{h}_0 + \mathbf{b}_1^{q})$ $\mathbf{z} = \mathbf{W}_2^{q^{\top}} \mathbf{h}_1 + \mathbf{b}_2^{q},$ Completed data log likelihood

We posit the variational program $z \sim q$: Draw $\epsilon, \epsilon' \sim \text{Normal}(0, 1)$. 2. If $\epsilon' > 0$, return $G_1(\epsilon; \lambda_1)$; else if $\epsilon' \leq 0$, return $G_2(\epsilon; \lambda_2)$. Value of Latent Variable z Langevin-Stein with a Gaussian family fits a mode. Langevin-Stein with a variational program approaches the truth. **Experiments: Binarized MNIST** We model binarized MNIST, $\mathbf{x}_n \in \{0, 1\}^{28 \times 28}$, with $\mathbf{z}_n \sim \text{Normal}(0, 1),$ $\mathbf{x}_n \sim \text{Bernoulli}(\text{logistic}(\mathbf{z}_n^\top \mathbf{W} + \mathbf{b})),$ where \mathbf{z}_n has latent dimension 10 and with parameters {**W**, **b**}. We posit the variational program $\mathbf{z} \sim q$: with parameters $\{\mathbf{W}_0^q, \mathbf{b}_0^q, \mathbf{W}_1^q, \mathbf{b}_1^q, \mathbf{W}_2^q, \mathbf{b}_2^q\}$. At test time, we throw away half the pixels and impute them using different objectives. We compare the log-likelihood of the completed image.

Inference method Mean-field Gaussian + KL Mean-field Gaussian + LS Variational Program + LS

The variational program performs better than KL without directly optimizing for likelihoods.

	Completed data log-likelihood
$\lfloor (q p) \rfloor$	-59.3
	-75.3
	-58.9

