
Princeton University
Identity Guidelines Signature or wordmark

WORDMARK

SIGNATURE

The signature
The Princeton signature should be 
included on all offi cial Princeton 
publications. 

It need not appear in a large or 
prominent position, but it should be 
included to signal a publication’s 
core relationship to Princeton. 

The signature should be used in all 
situations that call for the Princeton 
“logo,” for instance on promotional 
materials for public events for which 
Princeton is the primary sponsor.

The wordmark
The wordmark may be used alone in 
some situations. When the wordmark 
is used alone, the shield should also 
appear somewhere on the publication 
or item. It may be particularly useful to 
incorporate the wordmark separately 
from the shield in display settings or 
in less formal situations. 

Digital art for the Princeton signature 
and wordmark is available to the 
Princeton community for use on 
publications relating to the University. 
Please visit our website 
(www.princeton.edu/identity) or 
contact Megan Peterson 
(meganp@princeton.edu / 
609-258-5730) or Laurel Masten 
Cantor (lmcantor@princeton.edu / 
609-258-5734) in the Offi ce of 
Communications for digital fi les. 

6

Operator Variational Inference
Rajesh Ranganath†, Jaan Altosaar†, Dustin Tran‡, David Blei‡

†Princeton University, ‡Columbia University

Summary

• All variational inference requires statistical and computational
tradeoffs. How do we formalize these tradeoffs?

• We use operators, or functions of functions, to design variational
objectives. Operators enable us to analyze these tradeoffs.

• For example, we demonstrate variational programs—a rich class of
posterior approximations that does not require a tractable density.

Variational Objectives

• Variational inference is an umbrella term for algorithms that cast
Bayesian inference as optimization.

• We want to compute the posterior p(z |x), for latent variables
z= (z1, . . . ,zd) and data x.

• The evidence lower bound (ELBO) is the most popular objective,

Eq(z)[log p(x,z)− log q(z)].

• Optimizing the ELBO imposes specific properties on q ∈Q.
• We aim to study objectives which trade off different properties.

Operator Variational Objectives

• We define a new class of variational objectives.
• There are three ingredients that form an operator objective:

1. An operator Op,q that depends on p(z |x) and q(z).
2. A family of test functions f ∈ F , where each f(z) : Rd→ Rd.
3. A distance function t(a) : R→ [0,∞).

sup
f∈F

t( Eq(z)[(O
p,q f)(z)] )

• It is the worst-case expected value among all functions f ∈ F .
• To use these objectives, we impose two conditions:

1. Closeness. Its minimum is achieved at the posterior,

Ep(z |x)[(O
p,pf)(z)] = 0 for all f ∈ F .

2. Tractability. The operator Op,q—originally in terms of p(z |x) and
q(z)—can be written in terms of p(x,z) and q(z).

• We parameterize q(z;λ) with standard approaches.
• We parameterize f(z;θ ) with a neural network.

Example: Langevin-Stein Operator Objective

For f ∈ F , the operator is

(Op f)(z) =∇z log p(x,z)>f(z) +∇>f , ∇>f =
∑d

i=1∇zi
f(z).

With distance function t(a) = a2, the objective is

sup
f∈F
( Eq(z)[∇z log p(x,z)>f(z) +∇>f] )2.

Example: A Discrete Operator Objective

Langevin-Stein operators have a discrete analog. For example, consider a one-
dimensional latent variable with support z ∈ {0, . . . , c}. Then

(Op f)(z) =
f(z+ 1)p(z+ 1,x)− f(z)p(z,x)

p(z,x)
.

where f is a function such that f(0) = 0.

Example: KL Divergence as an Operator Objective

The operator is (Op,q f)(z) = log q(z)− log p(x,z) ∀f ∈ F .
With distance function t(a) = a, the objective is

Eq(z)[log q(z)− log p(x,z)].

Operator Variational Inference

The operator objective is

min
λ

max
θ

t( Eλ[(Op,q fθ)(z)] )

Fix t(a) = a2; the case of t(a) = a easily applies.
Gradient with respect to λ. (Variational approximation)

∇λLθ = 2 Eλ[(Op,q fθ)(Z)] ∇λEλ[(Op,q fθ)(Z)]

Gradient with respect to θ . (Test function)

∇θLλ = 2 Eλ[(Op,qfθ)(z)] Eλ[∇θOp,q fθ(z)]

We use black box gradients with two sets of Monte Carlo estimates.

Characterizing Objectives: Variational Programs

The family q ∈Q is typically limited by a tractable density.
We design operators that do not depend on q, Op,q = Op, such as

sup
f∈F
( Eq(z)[∇z log p(x,z)>f(z) +∇>f] )2.

Variational programs enable a larger class of approximating families.

For example, consider a generative program of latent variables,

ε∼ Normal(0,1), z= G(ε;λ),

where G is a neural network. The program is differentiable and generates samples
for z. Its density does not have to be tractable.

Experiments: 1-D Mixture of Gaussians

We posit the variational program z∼ q:

1. Draw ε,ε′ ∼ Normal(0, 1).
2. If ε′ > 0, return G1(ε;λ1); else if ε′ ≤ 0, return G2(ε;λ2).

Langevin-Stein with a Gaussian family fits a mode. Langevin-Stein with a varia-
tional program approaches the truth.

Experiments: Binarized MNIST

We model binarized MNIST, xn ∈ {0, 1}28×28, with

zn ∼ Normal(0,1),
xn ∼ Bernoulli(logistic(z>n W+ b)),

where zn has latent dimension 10 and with parameters {W,b}.

We posit the variational program z∼ q:

ε∼ Normal(0, I)
h0 = ReLU(Wq

0
>ε+ bq

0)
h1 = ReLU(Wq

1
>h0+ bq

1)
z=Wq

2
>h1+ bq

2,

with parameters {Wq
0,bq

0,Wq
1,bq

1,Wq
2,bq

2}.

At test time, we throw away half the pixels and impute them using different
objectives. We compare the log-likelihood of the completed image.

Inference method Completed data log-likelihood
Mean-field Gaussian + KL(q||p) -59.3
Mean-field Gaussian + LS -75.3
Variational Program + LS -58.9

The variational program performs better than KL without directly optimizing for
likelihoods.

G(ε; λ)

ε ~ Normal(0, 1) z ~ q(z; λ)


