
TensorFlow Distributions
Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan,

Dave Moore, Brian Patton, Alex Alemi, Matt Ho↵man, Rif A. Saurous

Why TensorFlow?

I automatic di↵erentiation: numeric eval of derivative

I vectorized: exploits single instruction, multiple data instructions

I open source: www.tensorflow.org

Ideferred execution model

I leverage custom hardware: TPU, CPU, GPU

Idistributed computation

IGoogle-quality engineering

Why TensorFlow Distributions?

Ifirst-class citizen in TensorFlow (see above)

I fast: API makes it hard to write slow code

Iflexible: random variable transformations, derived distributions

Inumerically precise (@ 16, 32, 64 bits)

IBijectors

I volume-tracking transformations

I automatic caching

Iworkhorse behind Edward probabilistic programming

(edwardlib.org)

Iwell suited for black-box variational inference and HMC

Shape Semantics

Distributions exploits vector computation by combining multiple

draws and parameterizations in a single Tensor.


n draws per

parameterization| {z }
sample shape (indep,

identically distributed)

,
b di↵erent
parameterizations| {z }
batch shape (indep,

not identical)

, d dimensions per draw| {z }
event shape (can be

dependent)

�

The shape of sample Tensors is partitioned into three

components:

1. Sample shape represents independent, identically distributed

draws, generated by running dist.sample(n).

2. Batch shape indexes di↵erent parameterizations to the same

distribution family; this enables the common use case in machine

learning of a “batch” of input/output pairs where each input

parameterizes a di↵erent distribution.

3. Event shape represents the shape of a single draw (random event)

from the distribution. E.g., scalar distributions (Normal, Gamma,

etc.) have event shape [], while a distribution over images might

have event shape [640, 480].

Black-Box Variational Inference

e = make_encoder(x)

z = e.sample(n)

d = make_decoder(z)

r = make_prior ()

avg_elbo_loss = tf.reduce_mean(

e.log_prob(z) - d.log_prob(x) - r.log_prob(z))

train = tf.train.AdamOptimizer (). minimize(

avg_elbo_loss)

Example 1: Variational Autoencoder

def make_encoder(x, z_size =8):

net = make_nn(x, z_size *2)

return tfd.MultivariateNormalDiag(

loc=net[..., :z_size],

scale=tf.nn.softplus(net[..., z_size :])))

def make_decoder(z, x_shape =(28, 28, 1)):

net = make_nn(z, tf.reduce_prod(x_shape ))

logits = tf.reshape(

net , tf.concat ([[-1], x_shape], axis =0))

return tfd.Independent(tfd.Bernoulli(logits ))

def make_prior(z_size=8, dtype=tf.float32 ):

return tfd.MultivariateNormalDiag(

loc=tf.zeros(z_size , dtype )))

Example 2: Laplace-Normal compound

p(x | �, µ0, �0) =

Z

R
Normal(x | µ, �) Laplace(µ | µ0, �0) dµ.

# Draw n iid samples from a Laplace.

mu = tfd.Laplace(

loc=mu0 , scale=sigma0 ). sample(n)

# ==> shape: ([n], [], [])

# Compute n different Normal pdfs at

# scalar x, one for each Laplace draw.

pr_x_given_mu = tfd.Normal(

loc=mu , scale=sigma ).prob(x)

# ==> shape: ([], [n], [])

# Average across each Normal ’s pdf.

pr_x = tf.reduce_mean(pr_x_given_mu , axis =0)

# ==> pr_estimate.shape=x.shape =[]

Bijectors

A Bijector implements a bijective, di↵erentiable function, its

inverse, and the log of its Jacobian determinant. A new random

variable Y can be defined in terms of another random variable a

bijector, e.g.,

pY (y) = pX(F
�1
(y)) |DF�1

(y)|,
where DF�1

is the inverse of the Jacobian of F .

Using Bijectors

TransformedDistribution is a distribution p(y) consisting of a

base distribution p(x) and invertible, di↵erentiable transform

Y = g(X).
standard_gumbel = tfd.TransformedDistribution(

distribution=tfd.Exponential(rate =1.),

bijector=tfb.Chain ([

tfb.Affine(

scale_identity_multiplier =-1.,

event_ndims =0),

tfb.Invert(tfb.Exp()),

]))

Bijector Caching

IBijectors automatically cache input/output pairs of operations,

including the log Jacobian determinant.

ICache hits occur when computing probabilities of sampled values

(as in variational inference); this allows us to elide the inverse

calculation.

IAdvantageous when inverse calculation is slow, numerically

unstable, or not easily implementable.

ICan improve asymptotic complexity, e.g., takes

InverseAutoregressiveFlows from quadratic to linear time.

Smooth Coverings

IBijector framework extends to non-injective transformations

where the domain can be partitioned as a finite union of Dk’s

such that each F : Dk ! F (D) is a di↵eomorphism (i.e., smooth

coverings).

IExample:

half_cauchy = tfd.TransformedDistribution(

bijector=tfb.AbsoluteValue (),

distribution=tfd.Cauchy(loc=0., scale =1.))

Mountain View, CA {rif,trandustin}@google.com

www.tensorflow.org
edwardlib.org

